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This report describes an expert critiquing system, the 
Support Environment for Design And Review (SEDAR), 
that uses a task-based model of design for flexible control 
of its multi-strategy critiquing abilities. SEDAR has been 
developed for the flat and low-slope roofing domain, a 
subfield of the building design domain. It is designed to 
support the existing design/review protocol for roof 
design for the U.S. Army Corps of Engineers. 

SEDAR offers three critiquing strategies. The incre- 
mental error prevention strategy is intended to help users 

avoid errors by visually displaying "off-limits" areas before 
errors can be made. The incremental error correction 
strategy's intent is to give immediate feedback to the user 
during the design process, so that the errors may be 
corrected before their effects are propagated to sub- 
sequent parts of the design. The batch-processing de- 
sign review strategy is intended to allow the user to con- 
duct reviews on a design after particular roof subsystems 
are completed, as some errors can not be detected until 
this stage. 
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1   Introduction 

This report describes an expert critiquing system, the Support Environment for 
Design And Review (SEDAR) [Fu 1994], that has been developed for the flat and 
low-slope roofing domain, a subfield of the building design domain. The primary 
contribution of SEDAR is its use of a task-based model of design, called the 
Designer's Task Model (DTM), to guide its critiquing actions. SEDAR's use of the 
DTM allows it to flexibly track individual roof designers' problem solving strategies, 
and to provide the most relevant critiques at each step in the design process. 

SEDAR was developed with two primary objectives. The first objective was to in- 
vestigate theories concerning expert critiquing systems and the role of computers 
as collaborators in the design process. The development of the DTM was an attempt 
to address certain shortcomings of existing expert critiquing systems. The second 
objective was to create a system that solved a significant problem in the Architect/ 
Engineer/Contractor (A/E/C) community, specifically to facilitate the processing of 
uncompleted design reviews delaying building development and construction. In 
particular, SEDAR is a resource or tool that a designer may use to apply the col- 
lected expertise of other designers and reviewers efficiently to the current design 
task. To achieve this function, SEDAR supports and improves upon the existing 
design/review process of A/E/C firms. The design/review process, described in more 
detail later in this chapter, is essentially one of iterative redesign. 

Human critics give reasoned opinions based on observations of their subjects' 
problem-solving behavior. They help their subject recognize and correct misconcep- 
tions, biases, and poor habits. They may also help to fill in gaps in the subject*s 
knowledge of the task domain. The goal of expert critiquing systems is to augment 
users' problem-solving abilities in the system's domain of expertise in a similar 
fashion to that of human critics. The computer critic interacts with the human user 
in a fashion similar to Figure 1. 

Such systems are one of the many types of decision support technologies that have 
evolved over the past two decades in the field of artificial intelligence. They have 
been constructed for various task domains, including medical diagnosis [Miller 
1986], circuit design [Spickelmier 1988], kitchen layout [Fischer 1991], and antenna 
layout on ships [Zhou 1989]. 
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Figure 1. The Critiquing Interaction Model. 

A significant problem with many existing critiquing systems is their inability to 
adapt their critiques to the changing goals and beliefs of the user. As the needs of 
the user evolve over the design process, the critiquing system must be able to change 
the content of its critiques to present the most focused, salient advice with respect 
to the existing design and the user's design goals. Another problem with expert 
critiquing systems is their inability or unwillingness to yield control of the problem 
solving process to the human. By forcing the human along inflexible solution paths, 
critiquing systems may inadvertently annoy rather than help the user. 

SEDAR's primary contribution to the field of expert critiquing systems is its use of 
a DTM to direct the expert critiquing system in a focused but flexible way. 
Developed from roofing literature and interviews with domain experts, the DTM is 
a hierarchically organized model of an experienced roof designer's task structure for 
roof design. The DTM is used to map observed user actions onto beliefs about the 
user's intentions. These beliefs then influence the response of the system to the 
user's actions. Unlike the user goal models of current expert critiquing systems 
[Mastaglio 1990; Fischer 1993], the DTM is a process-based representation used in 
a way that permits it to adapt to the problem-solving behavior of individual users. 

Another contribution of this work is an assessment of the utility of different critiqu- 
ing strategies in the context of supporting experienced designers in the roofing 
domain. The basic definition of expert critiquing systems presented above encom- 
passes an enormous variety of advice-giving strategies. A system may give short, 
one-shot critiques to jog the memory of the user or it may give longer, more involved 
explanations. The criticism may be preventative or correctional (or both). A system 
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may be aggressive, actively reasoning about the design and notifying the user of its 
opinions when necessary, or it may be passive, allowing the user to determine when 
the critiquing process should take place. 

SEDAR supports three critiquing strategies. The error prevention strategy seeks to 
avoid errors on the roof design by cuing the user before an error can occur. The error 
correction strategy tests for existing errors on the design. The design review strategy 
provides a tool that a designer may use to produce critiques on particular roof sub- 
systems. Testers of the system used each of the critiquing strategies and were asked 

to provide an assessment of each. 

Just as many different forms of advice may be generated by a critiquing system, 
there are also many ways of expressing that advice to the user. Early expert sys- 
tems like ONCOCIN and ATTENDING were mainly text-based; more recent critiqu- 
ing systems like JANUS, CLEER, and SEDAR have begun to explore how graphical/ 
pictorial representations may be used to improve the effectiveness of the critiquing 
process. SEDAR's use of integrated graphical/textual critiques displayed directly on 
the roof design is another contribution of this work. 

The remainder of this chapter introduces the roof design task, discusses how the 
design/review protocol of A/E/C firms supports this task, and presents an overview 
of this research effort. 

The Roof Design Task 

The low-slope roofing domain was chosen for use in SEDAR for a number of reasons. 
The volume of built-up roofing (a type of flat/low-slope roofing) alone annually 
installed in the United States totals about 3 billion square feet [Griffin 1982], 
enough to cover Washington, DC twice. A conservative estimate by the National 
Bureau of Standards is that 4 to 5 percent of these roofs fail prematurely, causing 
a huge economic burden on the buildings' owners for repair and replacement, a 
significant legal threat to architects, contractors, and manufacturers involved in the 
roofing industry, and in a few extreme cases physical danger to those living or work- 
ing within the affected building. 

The domain itself is complex in that the roof designer must juggle a multitude of 
economic, technical, political, and even social factors while creating a roof design. 
Economically and politically speaking, the building's roof design lags far behind the 
more "glamorous" building subsystems competing for the building owner's money 
and the architect's time and interest. Technically, a number of factors make modern 
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roof design increasingly complex. The proliferation of new materials, expanding roof 
dimensions, more rigorous roof-performance requirements, and modern trends in 
flexible building design all combine to make the roof designer's task more difficult. 

However, the roof design domain is not so complex as to be intractable. As a sub- 
system of the building system, roof design involves only a highly restricted subset 
of both the tasks and objects relevant to building design. Furthermore, because of 
the recognized importance of the roofing system, handbooks defining a clear stan- 
dard of quality roof design are readily available. 

The responsibility of creating a high quality, durable roof begins with the designer. 
Although problems in the roof may be caused by poor roof application techniques, 
cost-cutting attempts, and even ignorance, a clear, complete, and correct roof plan 
will help to eliminate many of the problems experienced in the construction and 

maintenance phases of the roofs life cycle. 

Studies of roof designers showed that they tend to decompose the overall design task 
into subtasks focused on designing subsystems of the roof system. However, roof 
design is not truly hierarchically decomposable; each subtask cannot be considered 
in isolation from the other subtasks. Because of the many interdependencies among 
subtasks, roof design is only heterarchically decomposable [Case 1994]. The knowl- 
edge gained from these studies led to the proposal and use of the DTM to represent 
this task decomposition and to provide flexible support for the roof designer. 

The Design/Review Process 

The Design/Review Process is used by the A/E/C community to help ensure the 
quality of designs. The process is one of iterative redesign, similar to the method 
described by Brown [1986]. It is also a significant contributor to the length of the 
(often) months-long design/review process. 

Throughout the building design process, two groups of people work on the building 
design. The design team is responsible for the synthesis of design, from developing 
functional specifications for the building, through interactions with the customers, 
to finalizing the set of design documents for the construction stage. At many points 
in the design process, the design team submits the existing design documents to a 
review team, who periodically check the documents for inconsistencies, errors, and 
other suboptimal aspects of the design. Figure 2 displays the relationship between 

the design and review teams. 
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Partial Drawings 
ations 

Review Comments 

<^ 

Review Manager 

Reviewer 2 

Design Team Review Team 

Figure 2. The design/review process. 

Each member of the review team is an expert in a different engineering field; for 
example, in a building design review team, there may be an architect, electrical 
engineer, structural engineer, mechanical engineer, etc. The design documents pass 
from member to member of the review team, as each critiques the design according 
to his/her area of expertise. The critiques are accumulated as a set of review com- 
ments and are returned to the design team along with the design documents. 
Reviews must be conducted at least twice during the design process. The design 
process itself may be divided into four stages of design completion: conceptual 
design, intermediate design, detailed design, and the final design (Figure 3). 

During the conceptual design stage, the 
design team works closely with the cus- 
tomers to determine the functional re- 
quirements of the building. Functional 
requirements vary from building to 
building. For example, a building with 
an indoor pool requires additional 
ventilation capabilities to prevent ex- 
cessive moisture from building up with- 
in the room, and a computer laboratory 
requires a larger than normal air condi- 
tioning capacity, which may translate 
into larger air conditioning units and 
ventilation ducts. After clarifying the 
customer's functional requirements, 
some rough, high-level design decisions 

Conceptual 
Design 

^ 

Intermediate 
Design 

&■ 

Detailed 
Design 

& 

Final 
Design 

At Least 
2 Reviews 

Figure 3. Design completion stages and reviews. 
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are made about the roof, including the layout of major roof components. During the 
intermediate design stage, the design team adds more detail to the building 
drawing. For example, large pieces of mechanical equipment, such as air con- 
ditioning units, roof access mechanisms, and walkways that allow access to the 
equipment on the roof, are laid out on the design. During the detailed design stage, 
further detail is added to the design; appropriate to this stage would be equipment 
and roof flashing details. Also, a set of specification documents are created, which 
describe the composition of the building components and contain further design and 
construction guidelines. In the final design stage, the building drawings and 

specification documents are completed. 

Based on conversations with review personnel during visits to two USACE division 
offices, where reviews are carried out for building designs for each office's geographic 

region, three conclusions were made: 

1. Because of the nature of the design/review protocol, the process of designing 
a building is an inherently time-consuming, resource-intensive process. In 
particular, the assignment of qualified review personnel to other tasks in 
division offices created resource bottlenecks among the existing reviewers—a 
single reviewer would have dozens of backlogged design documents to examine. 
Furthermore, the design checking process is slow and tedious; the reviewer 
must methodically check for all possible errors. 

2. Due to the time-constrained environment, many reviewers are often forced to 
"cut corners" with respect to reviews of design documents. For example, a 
reviewer might look at a few critical aspects of the design to develop a feel for 
the competence of the design team. If they meet the reviewer's criteria, then 
the reviewer is apt to check the remainder of the design less carefully, because 
he or she feels that the design team is less likely to make errors. While this 
viewpoint is justifiable given the time limitations imposed by the existing work 
environment, a rigorous, complete design check is certainly preferable, if it can 

be accomplished efficiently. 

3. Designs are reviewed only at certain predefined points in the design process. 
Again, this is an artifact of the existing design/review protocol. Given the 
amount of time that a design team has to wait while the review team checks 
the design documents, the current protocol of performing reviews once or twice 
during the design process is an effort to balance design generation with error 
discovery and correction. If documents were reviewed more often, errors would 
be caught earlier in the design process, and less redesign would be needed to 
correct those errors. However, this carries the additional cost of holding more 
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reviews. If documents were reviewed less often, the overall time cost of 
performing reviews would decrease, but the possibility of extensive redesign 
due to an earlier error would increase. 

Project Overview 

SEDAR's answer to the problems of the existing design/review process is to better 
integrate the design and review phases of the protocol. First, the type of design rule 
checking conducted by reviewers should be performed completely, efficiently, and 
continuously during the design process. The benefit of continual checking is that a 
designer is notified of design flaws immediately after the error has been made. 
Besides alerting the designer when errors have been made, the opportunity exists 
to prevent the errors in the first place. The goal of expert critiquing systems is not 
to replace the human in either the design or review processes, but rather to augment 
his/her abilities with a flexible, intelligent tool. 

The incremental critiquing strategies of SEDAR (error prevention and error 
correction) are best suited to assist the designer. The designer may also conduct 
automated reviews on the existing design by invoking the design review critic. Thus 
one use for SEDAR is as a surrogate member of the design team, applying 
knowledge from constructibility reviews to assist the roof designer (Figure 4). Use 
of SEDAR in this environment is the primary focus of this work. 

SEDAR can also provide assistance to reviewers. The design review critic helps a 
roof design reviewer to thoroughly check published design codes [NRCA 1985], 
which establish the minimum require- 
ments of a roof design. The reviewer 
may then check the roof on higher-level 
issues (e.g., optimality of roof-mounted 
equipment, walkway, and drainage sys- 
tem design) that are currently beyond 
SEDAR's capabilities. A depiction of 
this scenario is shown in Figure 5. 

SEDAR may be characterized as an in- 
tegrated design environment that uses 
the critiquing paradigm to guide the 
content and timing of its user assis- 
tance. Central to the critiquing para- 
digm of SEDAR is the use of the DTM 

Constructibility Review 
Knowledge Applied to 
Design 

SEDA 

Roof Designer 
(Architect) 

Figure 4. Use of SEDAR in the design team. 



16 USACERL TM 96/99 

._    /a 

Partial Drawings 
Specifications 

4j 
/J         Reviewer 1        \J 

^^     •          N/N       usesSEDAR                     ~ 
^w                     for roof review                   Hw 

Review                                                     Reviewer 2 

Review      "*~"""^ 
Comments 

Manager 

/            l/Ny Additional                    ffl 
Reviewers Aj   ^^R^. 

Reviewer 3 

Review Team 

Figure 5. Use of SEDAR in the review team. 

to control the critiquing process, something unique in the domain of expert 
critiquing systems (Chapter 4). 

The evaluation of the SEDAR research prototype yielded interesting results. Roof 
designers liked the system in general but had strong responses to particular system 
elements. They also provided considerable insight on how to improve the system to 
meet their needs. 

Report Outline 

Before starting an in-depth discussion of the research for this project, some back- 
ground information will be presented. Chapter 2 contains a discussion of several 
issues along which expert critiquing systems may be characterized. These various 
dimensions define the purpose, strategies, and flexibility of critiquing systems. Past 
work on critiquing systems, as well as related noncritiquing design systems are 
summarized according to these issues in Chapter 3. A high-level description of 
SEDAR made in terms of the issues is also included. The research contributions, 
summarized above, are discussed in more detail in Chapter 4. The background 
information concludes with a short overview of the low-slope-roofing domain in 
Chapter 5. Besides diagraming the components of a basic flat/low-slope roof, a closer 
look is taken at why roofs fail and at how human designers approach the roof design 
task. Chapter 6 is a component-by-component overview of the SEDAR architecture. 
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Its purpose is to provide a concise functional description of the capabilities of 
SEDAR. Chapters 7 and 8 look at SEDAR from different perspectives. Chapter 7 
describes SEDAR's knowledge representation, while the operation of SEDAR is 
illustrated using a series of examples in Chapter 8. Chapter 9 describes the 
evaluation/testing strategy that was used and the results of the experiments. The 
design and implementation of SEDAR has raised many interesting issues, which 
range from rethinking the philosophy of SEDAR to dealing with domain-specific 
issues. Some of the most important issues are presented in Chapter 10. Finally, 
Chapter 11 offers some conclusions made at this stage of the research effort. 
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2  Issues in Expert Critiquing Systems 

This chapter provides an overview of many of the important issues in expert 
critiquing systems, which define dimensions along which expert critiquing systems 
may be characterized. The set of issues addressed in this work are: the user com- 
munity that the system seeks to assist; the role of the critiquing system in its 
environment; the extent of the system's advisory capability; the method of critique 
generation; the set of intervention strategies determining the intrusiveness of the 
critic; the capability of adapting to needs of the specific user or work situation; the 
existence of a user goal modeling or user task modeling capability; and the design 

of an appropriate user interface to communicate the critiques. 

The answers a critiquing system provides to these questions defines its method of 
interaction with the human user. This chapter concludes with a description of 

SEDAR along these dimensions. 

According to Silverman [1992a], the goal of expert critiquing systems is not machine 
deduction of how to perform tasks, but of machine-assisted human induction/deduc- 
tion. In other words, such systems recognize that humans tend to err in prob- 
lem-solving situations and help the human reach improved task performance along 
some set of metrics. Common metrics include: decreased error rate, decreased task 
completion time, increased optimization of a set of design quality measures. How 
an expert critiquing system goes about achieving these goals is less clear. Critiqu- 
ing systems vary according to their intentionality, critiquing strategy and ability, 
and a host of other variables. Both Silverman [1992a] and Fischer [1991] provide 
a set of these variables, which are presented below along with a few additional 
variables of the author. From reading the literature, it is easy to come away with 
a sense of the dimensions being boolean in nature, having just one of the two 
possible values denoted by the characterization. In reality, most systems rarely fall 
neatly into one category or the other for any dimension; they usually fall somewhere 

between the two extremes. 
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User Community 

Determining the experience level of the user community in the task domain is one 
of the first tasks that a researcher interested in constructing an expert critiquing 
system must face. The reason for this is that different types of users impose differ- 
ent demands on the critiquing system. To illustrate this, Figure 6 shows a common 
ontology for the user population based on experience. 

Individuals at the "novice" and "intermediate" skill levels are relative newcomers 
to the task domain and are not yet fundamentally competent in the task domain. 
Typically, they are people with less than 2 years experience in the domain. They are 
prone to basic misconceptions, missing knowledge, biases, and mistakes in judg- 
ment. Critiquing users at these levels of competence requires in-depth knowledge 
of the task domain and an ability to diagnose and correct problems in the users' 
mental models [Rook 1993] of the task. Systems that deal with novice and inter- 
mediate-level users are also known as intelligent tutoring (ITS) or intelligent 
computer-assisted instruction (ICAI) systems. 

As individuals gain more experience in the task domain, they become "practitioners" 
and "proficient practitioners." Most of the professionals in a given task domain fall 
within these two categories. In contrast with novice- and intermediate-level users, 
practitioners and proficient practitioners are fundamentally competent in the task 
domain. Their errors are usually due to minor slips, forgetting of knowledge, or 
biases. Thus the critiquing strategies employed by systems intended for this level 
of user are very different from those used for novice- and intermediate-level users. 
We will discuss this issue and its implications in greater depth in the following 
chapter. If the task is complex (e.g., interdisciplinary in nature, or if knowledge life 
expectancy is short), unfamiliarity with state-of-the-art practices may also cause 
errors. Finally, practitioners and proficient practitioners are usually situated in a 
work environment. As has been seen with the A/E/C community, time and resource 
constraints may also play a major role in causing errors. SEDAR is intended to 
support users at this experience level. 

Novice 

^ 

R Intermediate 

^ 

Practitioner Proficient  f 
Practitioner 

Increasing Experience 

Expert 

Figure 6. Experience levels. 



20 USACERL TM 96/99 

"Masters" or "experts" are scarce. They are individuals who define and extend the 
state of the art in their domains. They are capable of considerable introspection 
about the domain, and are the sources of the knowledge used in expert critiquing 

systems. 

The Role of Critiquing Systems in Design Environments 

The goal of designing a performance-oriented critiquing system is to improve user 
performance for a task in a work environment. Such systems act as surrogate team 

members or advisors. 

In Figure 7, two computer critics are members of the team designing the product. 
The critics examine the product design and interact with members of the design 
team to improve user performance. Possible definitions of "improving user perfor- 
mance" are that the end product has fewer errors, better optimizes measures of 
design quality, or is completed in less time. Such systems are created with the 
quality of the final product as the primary goal. 

Educational critiquing systems play the role of teacher to their students (Figure 8). 
Such systems are concerned more with correcting the basic conceptual biases of the 

Team 
Member 

Figure 7. Performance-oriented critiquing system environment. 
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Figure 8. Education critiquing system environment. 

user and with providing missing 
knowledge that the user lacks. 
These types of systems may 
have more elaborate explana- 
tion (tutoring) schemes that 
allow them to explain the high- 
level motivations for critiques 
that they generate. Intelligent 
computer-assisted instruction 
(ICAI) systems and intelligent 
tutoring systems (ITS) fall into 
this category of critiquing sys- 
tems. 

Most systems usually fall between these two categories. It would be in the best 
interest of performance-oriented systems to consider the lessons learned from edu- 
cational systems, and vice versa. Despite the specific examples that were presented, 
the two roles are certainly not mutually exclusive. Every expert critiquing system 
must sometimes take on the role of teacher if the critiquing situation demands the 
role. In a performance-oriented environment, promoting correct problem-solving 
behavior will lead to improved performance in subsequent tasks. Thus it is worth- 
while to explain the motivations behind critiques and advice given by the system. 
SEDAR is more of a performance-oriented system than an educational system. It 
is intended to be situated in a work environment where it can provide support to 
roof designers at the practitioner and proficient practitioner levels of experience. 

Advisory Capability 

All critics have the ability to detect errors or suboptimal features of the user's 
product. After the problems have been detected, critics may rely either on user 
actions to resolve the problems, or they may suggest alternatives to the user's solu- 
tion. These types of critics are called solution-generating [Fischer 1991]. Solution- 
generation is one way of providing constructive criticism to the user. A common 
term to describe solution generation in a design domain is design suggestion. 

SEDAR currently supports the error detection advisory capability and a primitive 
design suggestion capability. It can suggest simple changes (or equivalently, detect 
object omissions) in the roof design in the form of shadow objects. This issue is 
discussed in more detail in Chapters 6 and 8. Future versions of SEDAR will 
support more sophisticated solution generation techniques. 
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Method of Critique Generation 

There are two approaches to generating critiques, differential and analytic. In a 
differential critiquing system, the system uses a problem-solver to generate its own 
solution and compares it against the user's solution. The differences are catalogued 
and shown to the user. Differential critiquing systems have the advantage in that 
the system knows the optimal (or close-to-optimal) solution to the problem and has 
found all the differences between its solution and the user's solution. When solu- 
tions for a problem are radically different (but equally valid), there may be a 
problem if the system generates its solution independently of the user. In this case, 
the solutions may be irreconcilable—the system cannot explain why the user's 
solution is suboptimal, nor can it explain the differences between the two solutions. 

Analytic critics check solutions with regard to predefined features using pattern- 
matching techniques and expectation-based parsers. An example of this is a system 
that encodes its "checking knowledge" as a set of condition-action rules culled from 
handbook and human expertise. One of the problems with analytic critiquing sys- 
tems is knowing what subset of the rules to apply for each critiquing episode. 

The knowledge encoded in SEDAR's knowledge base was taken from low-slope con- 
ceptual constructibility model by East, et al. [1995]. This model itself had its basis 
in the National Roofing Contractors Association's (NRCA) Roofing and Waterproof- 
ing Manual for Low-Sloped Roofing [1985]. Since the original form of the design 
codes was that of condition-action rules, SEDAR is currently an analytic critic. As 
SEDAR's advisory capability grows to include solution generation, its critique gen- 
eration strategy will also include differential techniques. 

Intervention Strategies 

The link between man and machine is especially critical in the expert critiquing 
paradigm. Careful thought must be given to when the system generates and dis- 
plays its critiques. One important distinction is between "active" and "passive" 
critiquing strategies. Passive critics are user activated. Code optimizers, spell 
checkers, and debuggers are all examples of passive critiquing strategies. Recent 
research has focused on active critiquing strategies that act whenever events 
warrant their application. Thus active critiquing strategies are often incremental 
in nature, which means that they are triggered by user design actions as the design 
process unfolds. Another view is that these systems try to provide critiques and 
advice at the appropriate time rather than wait for the user. Intervening immedi- 
ately after a user action that results in a suboptimal design has the advantage that 
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the problem situation is still fresh in the user's mind. Furthermore, immediately 
correcting significant flaws reduces or perhaps eliminates the need for expensive 
redesign later. The disadvantage of an active critiquing strategy is that too-frequent 
or improperly timed critiques may disrupt the concentration of the user. Passive 
critics are user-activated and are often batch-processing critics, which act on a 
specified set of design objects. Batch-processing critics have the advantage of 
critiquing "completed" (at least in the mind of the user) portions of the design. 

Silverman [1992a] provides an additional distinction among active critiquing 
strategies. These strategies can be divided according to their timing with respect 
to tasks in the problem-solving process. For the domain of roofing design, an 
example of a task is the design of the rainwater drainage subsystem. Before-task 
criticism is intended to prevent errors before they occur. For example, the system 
may remind a building designer of an unfinished portion of the building that should 
be completed before working on other areas. During-task criticism occurs during the 
performance of the task. In this case, imagine a critiquing system monitoring a 
user's actions and providing critiques for errors as they occur. Finally, after-task 
criticism is provided after the task is completed. Taken individually, each of the 
active critiquing strategies has its flaws. It is often difficult to decide what to show 
a user to prevent error; displaying too much information confuses the user, while 
displaying too little information reduces the effectiveness of the preventive strate- 
gies. During-task criticism may cause users to respond to only the local criticisms 
instead of rethinking the entire design task, resulting in more suboptimal designs. 
A system using only after-task criticism strategies produces critiques at a time when 
the user has already committed to a solution and may be reluctant to deviate from 
that solution. The effectiveness of criticism is severely reduced in this type of envi- 
ronment. Systems must combine active critiquing strategies to produce a system 
that provides criticism at the appropriate time. 

SEDAR supports both passive and active intervention strategies. The two active, 
incremental strategies are the before-task error-prevention critic and the during- 
task error-correction critic. The design review critic is a passive, batch-processing 

critic. 

Adaptation Capability 

Every user has different preferences and skills. A critiquing system needs the 
ability to adjust its criticism strategies to the needs of the specific user. Repeatedly 
displaying a critique that the user has decided to reject is unacceptable, as is 
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redisplaying critiques that the user already understands. Fischer [1991] calls this 

ability the system's adaptation capability. 

When discussing adaptation capability, it is useful to differentiate between systems 
that are adaptable and those that are adaptive. In adaptable systems, the user can 
explicitly change the behavior of the system by setting its parameters or by altering 
its knowledge content. An example of an adaptable system is one in which the user 
can add new design objects, relations between the objects, and design rules. Another 
example is a system with a "reject critique" button that permanently removes a 

critique. 

Adaptive systems automatically change their behavior based on their observations 
of user responses to their critiquing strategies. Building on the last example pre- 
sented above, if an adaptive system observes the user always rejecting critiques 
based on a specific rule, it may remove the rule from future critiquing actions. 

SEDAR is currently adaptable with respect to its critiquing components. Users have 
full control over the activation of its active intervention strategies—they may turn 
off particular critiques, particular rules in the knowledge base, and even sets of 
related rules. As discussed in Chapter 10, a critical future improvement for SEDAR 
is to add the capability of allowing user-created objects, relations, rules, and goals. 

User Modeling Capability 

One approach in dealing with the issues described above is to provide the system 
with a model of the user's goals or of the design task or both (Figure 9).  For the 

User-Initiated Actions, 
Requests 

Relevant Critiques, 
Advice 

User 

User Model 

Critiquing Engine 

Critiquing System 

Figure 9. Adding a user model to the critiquing interaction model. 
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purposes of this report, the user's goals are the requirements that the artifact design 
must satisfy. Examples of user goals for a roof design are watertightness, structural 
integrity, and aesthetics. Models that represent user goals are called user goal 

models. 

The user's tasks constitute the processes by which the design is created to meet the 
user's goals. User tasks for the roofing domain would include drainage system 
layout, equipment flashing design, and roof-mounted equipment layout. Models that 
represent the user's design tasks are called user task models. For the purposes of 
this report, these two types of models are more generally called user models, and a 
system which uses one (or both) of these models is said to have a user modeling 
capability. Whatever the type of model, the system uses the represented knowledge 
about the user to adapt its advice to best suit the user's needs. 

Silverman calls this "deep" knowledge of the user and the task environment. Recent 
research in the human-computer interaction domain [Rook 1993] has focused on how 
systems can foster the development of the appropriate mental model [Rook 1993; 
Canas 1994] of a problem-solving activity. In particular, Rook and Donnell [1993] 
concluded that subjects working with expert systems developed personal prob- 
lem-solving spaces primarily through the construction of a mental model of the 
expert system task performance. The transfer of information between machine and 
human is performed via the system's explanations of critiques. Therefore, a user 
goal modeling or user task modeling capability is important to expert critiquing 
systems for several reasons. First, a cognitive model allows greater coherency of 
system actions—by understanding the high-level goals and motivations of experts, 
the system can provide advice relevant to the user's current goals. Second, such 
systems have the ability to transfer good cognitive models of the problem-solving 
process to the user. By providing a complete and correct mental model for problem- 
solving for a particular domain, the system can generate goal-level and other moti- 
vational explanations. Third, modeling provides a framework for critique timing 
and intrusion, particularly if the modeling encapsulates knowledge of problem- 
solving tasks. Finally, modeling may reduce the runtime complexity of the system. 
This is a side-effect of the first point above; a system may be able to constrain its 
own inferencing relative to the user's focus of attention. 

SEDAR's major contribution to the field of expert critiquing systems is in this area. 
The DTM is a hierarchy of design tasks created from protocol analyses of expert roof 
designers. Since the roof design task is heterarchically decomposable, we have also 
modeled the dependencies between the various subtasks. During each incremental 
critiquing episode, the DTM is used to pick a subset of the design codes in the 
knowledge base to apply to the existing design. Thus the DTM allows SEDAR to 
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present the most appropriate critiques relative to the user's focus of attention at any 

point in the design process. 

The User Interface 

The last issue considered is that of the human-computer interface. Although the 
other dimensions may be well conceived, a critic may still be ineffectual if a proper 
interface is not developed. Critiquing systems are collaborative, and a great deal of 
communication must occur across the human/computer boundary. Thus the inter- 
face issue is of great concern to the developer of an expert critiquing system. Early 
expert critiquing systems [Kelly 1984; Miller 1986] used text-based methods to 
report their results. Often textual displays are too wordy, providing too much 

information in a manner that is difficult for people to assimilate. 

Instead, developers of recent critiquing systems have realized these shortcomings 
and have worked to develop better models of interaction. Often this means a combi- 
nation graphical/textual display of the artifact being designed and the critiques 
generated by the system. Rook and Donnell quantify the benefits of using a 
graphically-based critiquing paradigm versus a solely textual one [Rook 1993]. 

SEDAR uses a graphical/textual method of communicating its critiques. It is 
embedded within a commercial CAD application (AutoCAD*), and displays its mes- 
sages directly on the user's design window. The user may directly manipulate 
objects on the design (e.g., resize, delete, move). A full explanation of the user inter- 

face is in Chapter 8. 

Describing SEDAR Along the Above Dimensions 

SEDAR is a performance-oriented critiquing system intended for use with designers 
at the practitioner and proficient practitioner levels of expertise in roofing design. 
As such, SEDAR makes several assumptions, of which the two most prominent are 
mentioned here. The primary assumption that SEDAR makes is that the user is 
qualified to maintain control of the problem-solving process. From discussions with 
experienced roof designers, it was found that the order of design might vary 
according to the individual designer and the particular problem. An example of this 
is in the interaction between the drainage system design and roof-mounted 

equipment layout. 

AutoCAD is a registered trademark of AutoDesk, Inc. 
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In most cases, the latter task is heavily constrained and is performed first. However, 

in some cases the drainage system is more heavily constrained and is performed 

before mechanical equipment layout. Thus SEDAR is flexible with respect to the 

user's problem-solving preferences. The second assumption is that the user is 

qualified to judge the correctness and salience of critiques. Thus critiques and the 

rules that generate them can be overruled by the user. The above issue is related to 

the adaptation capability of SEDAR. SEDAR is adaptable with respect to the 

activation of its critiquing components; the user may toggle its critiquing strategies, 

goals in the DTM, rules in the knowledge base, and even specific critiques. Currently, 

SEDAR does not have the capability to allow the user to enter new objects, rules, or 

goals; this is a planned enhancement for the system (Chapter 10). 

SEDAR is able to anticipate and to detect errors. It also can generate simple design 

suggestions. These advisory capabilities are based on the set of rules extracted from 

roofing handbooks created by organizations such as the NRCA. The condition-action 

nature of these rules casts SEDAR as an analytic type critic. Future improvements 

may include a differential analyzer to initiate deeper critiques and design sugges- 

tions. The error prevention critic is an active, incremental, before-task critiquing 

strategy. Its role is to cue users of possible constraint violations by drawing "off- 

limits" areas directly on the design. The incremental, during-task error correction 

critic is less intrusive than the error prevention critic but is still active. Its task is 

to notify the user of existing problems on the design relevant to the last object placed 

on the design. Instead of directly displaying the constrain areas on screen like the 

error prevention critic, the error correction critic displays a message regarding the 

critiques, and displays them on user request. Finally, the design review critic is a 

passive, batch-processing, after-task strategy. Activated explicitly by the user, the 

design review critic discovers all design flaws with respect to the design tasks 

described in the DTM. For example, the user may perform a review on the drainage 

system design, or on the layout of mechanical equipment. The critiquing strategies 

are described in greater detail in Chapter 6. 

The DTM allows SEDAR to interpret the user's actions on the design and to adjust its 

critiques according to what it perceives as the user's "focus of attention." A description 

of the use of user goal models in previous critiquing systems is found in the following 

chapter; their differences with SEDAR's DTM are described in Chapter 4. 

Finally, SEDAR uses a direct iconic manipulation interface embedded in a design 

environment for roofing. Graphical/textual critiques are displayed directly on the 

roof design. Comparisons between SEDAR's method of critique display and previous 

tools in the design/review (construction management) field are described in the 

following chapter. 
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3   Related Work 

The primary focus of this chapter is to describe and to contrast previous expert 
critiquing systems to SEDAR. Besides characterizing each system according to the 
issues presented in the previous chapter, the interesting or novel features of the 
systems are also described. The critic descriptions are roughly in chronological order 

starting with the oldest system first and working up to recent systems. 

Many design systems that fall outside of the expert critiquing paradigm have also 
influenced this work. In the second part of this chapter, the relationships between 
the work on SEDAR are compared to other types of systems: 

• Intelligent CAD Systems 
• Intelligent Interfaces 
• Assisted Design Generation Systems. 

Expert Critiquing Systems 

The purpose of this section is to provide a survey of the developments in the expert 
critiquing field over the past decade. Figure 10 is a timeline of some of the influen- 
tial systems introduced in the 1980s and 1990s. Since the low-slope roofing domain 
of SEDAR falls within the broader scope of engineering design, the bulk of the 
discussion below will deal with systems involved in subareas of engineering design. 

CRITTER 

CRITTER [Kelly 1984] was one of the earliest expert critiquing systems for engi- 
neering design. The system evaluated circuit designs for functional correctness, 
operating speed, timing, robustness, and sensitivity to changes in device parame- 
ters. CRITTER operated in the classical batch-processing style—it received a circuit 
schematic, a set of behavioral specifications, and a set of characteristic signals it 
should accommodate. The schematic was then evaluated using various circuit 
analysis techniques. The results included information about whether the circuit 
would work and by what margins. The text-based design critique listed the unsatis- 
fied behavioral specifications along with a brief explanation of the problems. 
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Figure 10. Timeline of critiquing systems. 

CRITIC 

CRITIC [Spickelmier 1988] is an expert critiquing system that looks for errors and 
"bad design style" in circuit designs. It is"intended as both a performance-oriented 
and educational tool. 

CRITIC requires a low-level description of a circuit and a knowledge base that 
describes a particular design-style and technology.  In particular, the knowledge 
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base contains a set of primitives that describe the circuit elements that CRITIC will 
find directly in the circuit description. The knowledge base also contains structures, 
which describe interconnections of primitives and other configurations to be found 
by CRITIC. Structures are used in CRITIC to provide a framework for the critiquing 
process. Specifically, CRITIC first maps the circuit design's primitives to defined 
structures, and then uses the structure and primitive representation to generate its 
critiques. The use of structures in the critiquing process is similar to a primitive 
form of plan recognition. Since CRITIC does not require a functional description of 
the circuit to be given as part of the input, it tries to construct its version of the 
functional description of the circuit from the design itself. One can view this as a 
bottom-up approach to describing user intention. The contrasting top-down ap- 
proach occurs when a system receives a functional description (the user's goals) of 
the artifact as input. In this case, the system tries to match the observed user ac- 

tions to its functional description. 

CRITIC uses a library of design rules to check for design errors. Critiquing operates 
in a passive, after-task mode—the user submits a circuit design to CRITIC and 
receives a list of errors when the run is completed. CRITIC is integrated with a 
design environment, which allows for a graphical/textual display of its critiques. 
Before the critiquing run, the user may annotate the circuit design to mark areas 
of the circuit where certain errors should be ignored. 

ATTENDING 

ATTENDING [Miller 1986] critiques plans of anesthetic management for patients. 
As input, ATTENDING takes a list of a patient's underlying medical problems, the 
patient's planned surgical procedure, and a user-generated anesthetic plan speci- 
fying the various agents and techniques used for general or regional anesthesia. 
Since the complete anesthetic plan is expected as input, ATTENDING is a batch- 
processing critiquing system. As has often been the case with the first generation 
of critiquing systems, ATTENDING is also a passive system—the critic is invoked 

explicitly by the user. 

One of the early systems that performed differential critiquing, ATTENDING 
analyzes the given plan with respect to minimizing risk to the patient. Besides 
evaluating the risk of the given anesthetic plan, ATTENDING is able to generate 
and to evaluate alternative plans. Thus ATTENDING was one of the first solution- 
generating critiquing systems. Specifically, ATTENDING maintained a hierarchical 
decomposition of the decisionmaking process for generating anesthetic plans. The 
approach to generating alternative plans is to consider smallest global changes first, 
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and then to move on to larger and larger changes if the decrease in risk is not 
adequate. ATTENDING uses a natural-language interface. 

JANUS 

JANUS [Fischer 1991] is an integrated design environment based on the critiquing 
paradigm. Its purpose is to allow a designer to construct residential kitchen floor plan 
layouts and to help them learn general principles underlying such constructions. 
JANUS consists of two subsystems, JANUS-CRACK and JANUS-VIEWPOINTS. 

JANUS-CRACK is a knowledge-based design environment supporting the construc- 
tion of kitchens using domain-specific building blocks called design units. In 
JANUS-CRACK, the user is presented with a graphical/textual interface that allows 
direct manipulation of the design. JANUS-CRACK applies design principles from 
its knowledge base to the existing kitchen layout. There are "hard" principles like 
building codes and safety standards, and "soft" principles like user preferences. The 
design principles are captured as condition-action rules; thus JANUS-CRACK can 
be considered an analytical critiquing system. Its critics are active in that they are 
triggered by user actions on the design. For example, if a user moves a stove on the 
kitchen layout, the stove critic activates and tests the new stove location for com- 
pliance with stove-related design principles. The critics in JANUS-CRACK are 
during- and after-task critics because they are activated in reaction to a specific user 
action. Finally, the critiques generated by JANUS-CRACK are textual, but are 
linked to issue-specific hypertext information in JANUS-VIEWPOINTS. 

JANUS-VIEWPOINTS is a hypertext-based system containing recorded examples 
of good general principles of kitchen design. When the user clicks on a textual 
critique generated by JANUS-CRACK, JANUS-VIEWPOINTS is activated and 
displays the argumentation associated with that critique. Thus JANUS is charac- 
terized as having limited solution generating abilities. While JANUS does offer con- 
structive advice on where design units should be placed, this advice is not problem- 
specific, only domain-specific. 

JANUS is an adaptable system that allows the user to modify the design environ- 
ment by adding, deleting, and altering design units, critic rules, and relationships. 
Additionally, users can add their own examples of good design to the JANUS- 
VIEWPOINTS hypertext system. 
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CLEER 

Zhou et al.'s CLEER system [1989] is designed to help improve electromagnetic com- 
patibility among shipboard topside equipment and their associated systems. In 
particular, the purpose of CLEER is to determine the feasibility of a location where 
an antenna will be placed. The objective that CLEER tries to achieve is to avoid 
unintended blockage or distortion of the radiation patterns, to realize maximum 
intended range, and to avoid being a source of electromagnetic interference (EMI) 

to other electronic devices. 

CLEER draws its domain-specific knowledge from a set of databases and knowledge 
bases. Two databases store the ship description and the characteristics of equip- 
ment installed on ships. Constraints, heuristics, and analogical information is 
stored in three separate knowledge bases. Constraints are "hard" rules of thumb 
that must be followed, or infeasible equipment configurations will result. Heuristics 
are "soft" constraints in that they do not have to be satisfied to make an antenna 
arrangement feasible. CLEER uses these constraints in the search for the optimum 
location for an antenna. Finally, the analogical knowledge base stores past cases of 
antenna placement. 

CLEER first displays a graphical layout of the topside of the ship. This information 
includes the architectural structures as well as the equipment mounted on the ship. 
The user is presented with several options to change the equipment arrangement 
of the ship. One such action is to add a new antenna to the topside layout. When 
an antenna type is selected, CLEER searches its analogical knowledge base, based 
on the type of antenna and warship for similar antenna settings. If there is no past 
experience, the user chooses a location on the ship. CLEER then accesses its con- 
straint knowledge base to see if the arrangement is within a desirable limit with 
respect to safety requirements, warfighting capability and overall performance of 
the system. The antenna location is considered acceptable if all constraints 
associated with the antenna are satisfied. If the location is rejected, the reasons to 
justify the conclusion are displayed on the screen. CLEER then tries to find a better 
location for the antenna. Its heuristic search algorithm (hill-climbing) is directed 
by the "soft" constraints in the heuristics knowledge base. If a better location is 
found, it is displayed as part of the explanation, along with the critical heuristics 

that CLEER used. 

LISP-CRITIC 

LISP-CRITIC [Mastaglio 1990] is designed to support LISP programmers. Users 
ask LISP-CRITIC for suggestions on how to improve their code, and the system 
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replies with transformations that make the code more cognitively efficient (easier 
to read and maintain), or more machine efficient (code runs faster or uses less 

memory). 

LISP-CRITIC is thus a passive, batch-processing system. The critic's condition- 
action rules contain code patterns as their antecedents and code transformations as 
their consequents. Besides the rule library, LISP-CRITIC has a LISP domain 
model, which represents LISP in terms of its underlying concepts and basic func- 

tions. 

Of particular interest for this report is that LISP-CRITIC has a user-modeling 
component. The model is used to customize explanations, determine which subsets 
of rules to fire for each individual, and to provide the information to place users in 
a tutoring environment. The user modeling component of LISP-CRITIC serves as 
an interesting contrast to the DTM of SEDAR, and thus will be explained in greater 

detail. 

LISP CRITIC'S User Modeling Component. The user modeling component consists 
of access and update methods and a database containing individual information 
about users. The database contains the following information about the individual 

user: 

• The User Model is a representation of what the user knows about LISP 
concepts and functions. 

• The Dialog History is a list of the explanation episodes that the user has seen 

already. 
• The Preference Record is a list of favored LISP functions and "turned-off' 

LISP-CRITIC rules. 
• The Code Analysis contains two parts: (1) a profile of rules that have been 

fired in the past and their acceptance or rejection by the user and (2) statistical 

data. 

Thus the user model represents the critic rules, functions, and concepts that the 
system thinks the user knows. The model is built up over time (critiquing episodes) 

by the update methods. 

Use of the User Modeling Component. The user modeling component is used to 
tailor explanations to the particular user. For example, when a critique is generated 
and the user requests an explanation of the rule, the LISP domain model is checked 
to find the dependencies between the critiqued concept and subconcepts (more basic 
concepts).  The explanation module queries the user model for subconcepts with 
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which the user is unfamiliar. Additional explanation is then provided for those 

subconcepts. 

Unfortunately, Mastaglio does not explain how the user modeling component is used 
to determine which subsets of rules to fire for each individual or how the knowledge 
may be used in a tutoring environment. A logical conclusion one may reach from 
Mastaglio's discussion is that the set of rules "turned off' by the user are not used 

in future critiquing episodes. 

COPE 

COPE [Silverman 1992a] is a critic programming environment. The programmer 
uses a graphically-based editor that helps author bias/error identification and pre- 
ventative/corrective/repair strategy knowledge bases. COPE's function library holds 
high-level building blocks for implementing different critiquing functions such as 
showing hints, analogs, or defaults to prevent errors; and error checking, explana- 
tion generation, and repair functions to detect and resolve errors. The programmer 
defines a decision network that describes when to activate the programmed critics. 

COPE is the first expert critiquing system shell. It improves upon existing expert 
system shells by providing specialized support for critiquing systems. It provides 
the framework for programming systems to support users with various levels of 
expertise, from the novice to the proficient practitioner. While COPE uses a mixed 
media interface, it is not clear whether the resulting critiquing systems are mainly 

textual or graphical in nature. 

HYDRA 

HYDRA [Fischer 1993] is the successor to JANUS. It consists of four components: 
a construction component that serves the principal medium for the design, a speci- 
fication component that allows designers to specify design requirements, an 
argumentative hypermedia component, and a catalog component that contains a 
collection of previously constructed designs. HYDRA also has three distinct critiqu- 
ing strategies. Generic critics apply domain knowledge concerning desirable spatial 
relationships between design units. Specific critics detect inconsistencies between 
the design and its specifications. Finally, interpretive critics are topical groupings 
of critics and design knowledge. The user may define an interpretive critic to cri- 
tique the design from a particular perspective. The example that Fischer provides 
is that of a resale-value perspective. This critic would include domain knowledge 
pertinent to homeowners concerned about their home's resale appeal. 
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Like JANUS, HYDRA's critics are during- and after-task active critics. Critiques 
are textual in nature and shown in a message window below the construction com- 
ponent. Like LISP-CRITIC, HYDRA has a user-modeling component. The user 
model is the set of functional requirements specified by the designer, so the critiques 
produced by the specific critics are tied to the representation of the articulated goals 
of the design project. 

Other Types of Related Systems 

Concurrent Engineering Systems 

ICADS. The ICADS testbed [Pohl 1992] focuses on the development of a cooperative 
computer-aided design environment. ICADS uses a cooperative decisionmaking 
model with a blackboard control system and several independently executing 
domain experts and Intelligent Design Tools (IDTs). An IDT is a design solution 
evaluator. Based on their respective input templates, IDTs respond directly to 
changes in the current state of the design solution initiated by the designer in the 
computer-aided design (CAD) drawing environment. With minor exceptions, their 
evaluative capabilities are limited to quantitative analysis of the physical param- 
eters of the building design. 

The ICADS model also includes a conflict detection/analysis module that makes 
countersuggestions (based on the evaluation results to the suggestions from the 
designers) and a message router that receives and sends information to all partici- 
pants in the dialog. 

ICADS thus fits within the framework of concurrent engineering systems, which 
seek to fuse different perspectives on a product into a unified environment. Agents, 
both human and computer-based, represent the different viewpoints on design. The 
equivalent of the agent in the ICADS system would be the IDT. 

Concurrent engineering issues were considered in the development of SEDAR. For 
example, the SEDAR architecture allows multiple agents to lend critiques from dif- 
ferent perspectives on the roof design. Unfortunately only a single agent dealing 
with constructibility assessment is currently implemented. Also, SEDAR has no 
principled way of dealing with conflict detection and resolution. Another view of 
SEDAR is as a single agent for a concurrent engineering platform. SEDAR would 
lend critiques on the flat and low-slope roof design of a building design being devel- 
oped in a concurrent engineering platform. 
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ACE. ACE [Case 1994] is a concurrent engineering platform being developed at the 
U.S. Army Construction Engineering Research Laboratories (USACERL). Like 
ICADS, ACE brings together multiple perspectives on a design in a principled 
fashion through the sharing of data structures. ACE also provides a means for con- 
flict detection and conflict resolution through regulated information sharing. When 
a change is made on the design, only the set of agents relevant to the change are 
notified for approval. A version of SEDAR is under development as an agent in the 

ACE environment. 

Intelligent Interfaces 

CHECS (Chemical Engineering CAD System) [Goodman 1990] is a plan-based 
intelligent interface for computer-aided chemical process design. Of interest is its 
use of plan recognition to support its interface tasks. Specifically, CHECS observes 
a sequence of the designer's actions to discover the underlying plan, drawn from a 
plan library, of a chemical plant design. Once the plan is selected, the next logical 
step in the plant design process is inferred from the chosen plan. 

SEDAR may be described as a plan-based intelligent interface. It accepts user 
actions as input, forms beliefs of the user's intentions and goals, and provides assist- 
ance based on those beliefs. However, as is discussed in Chapter 6, SEDAR's use of 
the DTM is both more powerful and more flexible than the plan recognition system 

of CHECS. 

Assisted Design Generation Systems 

VEXED [Steinberg 1992] is a design-assistance system developed to model the 
design process as progressive top-down refinement and constraint propagation. 
Refinement of a design involves structural decomposition by breaking a module, a 
group of components being viewed as a functional block, into its subcomponents. 

VEXED takes as input a circuit design problem represented as a "black box" module 
with specifications on various features of its inputs and outputs, such as their 
datatypes, values, timing, and encoding. Modules may be broken into smaller, semi- 
independent submodules through the use of a set of refinement rules (expressed as 
condition-action rules). Primitive modules are associated with known components 
of the target technology. The output of VEXED is a fully completed design of the 
artifact. However, VEXED is not an automated design generation system. It re- 
quires input from the user to decide which uncompleted module to refine in each 

successive step. 
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VEXED operates in a refinement cycle. At the start of each cycle, VEXED displays 
a menu of the modules remaining to be refined, and the user selects one to refine. 
VEXED then finds all the rules that apply to the module, and displays them in a 
menu. The user selects one of the rules, and VEXED applies the rule to the existing 
design. Thus the user is responsible for strategic decisions, while VEXED takes care 
of the detailed manipulation and constraint propagation needed to carry out the 
user's decisions. 

If no rules apply to a module, or if user wants to do something not enumerated in the 
menu, he or she can use a graphical editor to decompose the module manually into 
submodules and their interconnections. LEAP (Learning Apprentice) generalizes 
the manual decomposition step into a new rule that can be used in subsequent re- 
finement cycles. VEXED records the refinement steps as an annotated tree-like 
design plan that shows the final design plan for the artifact. 

Chapter Summary 

The first section of this chapter described a set of expert critiquing systems organ- 
ized in a roughly chronological order. Each system made its own contributions to 
the expert critiquing field and had its own particular strengths and weaknesses. 
Early critiquing systems used passive, after-task, batch-processing, textual critiqu- 
ing strategies. Recent critiquing systems have developed active, during-task, 
incremental strategies embedded in graphical environments. Another trend in the 
growth of expert critiquing systems is the realization that multiple types of 
critiquing strategies are needed for different critiquing situations. Recent systems 
are able to generate critiques based on different perspectives. 

One weakness seen throughout the history of development of expert critiquing 
systems is how to use a user goal model or a user task model to guide the critiquing 
process and how to make the model an integral part of the control of the critiquing 
strategy. Thus SEDAR's use of the DTM may be viewed as an effort to fuse the user 
model with system control. The benefits of this fusion are that the system will be 
able to offer better advice at more appropriate times to the user. Throughout the 
rest of this report, the systems discussed in this chapter will be used to compare and 
contrast with SEDAR's design philosophy and implementation. 
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4   Research Contributions 

The primary contribution of this work is the use of a task model of design (or a user 

task model as described in Chapter 2) to flexibly control the critiquing process. The 

presence of a user model allows the system to adapt to the needs of the particular 

user. Without user models, critical issues such as the appropriateness of the content 

of critiques throughout the problem-solving process, the timing of incremental 

critiquing strategies, and the ability to critique the user at higher levels of abstrac- 

tion are difficult to address. 

The use of the DTM in SEDAR differs from previous efforts implemented in expert 

critiquing systems in two ways. First, SEDAR uses an explicit task model of design 

(the DTM) that expresses the dependencies between the tasks that a user must 

accomplish during the design process. This model is very different in structure than 

the user models employed by previous critiquing systems like LISP-CRITIC and 

HYDRA. This issue is discussed in greater detail below and in Chapter 6. Second, 

the use of the DTM allows SEDAR finer-grained control over what critiques are 

generated at each point in the problem-solving process. This ability is essential in 

incremental critiquing systems like SEDAR, where the system must be able to adapt 

the content of its advice as the design changes over time. This issue is discussed in 

greater detail in Chapters 6 and 8. 

Najem [1993] wrote in his doctoral dissertation: 

Critiquing is a very challenging problem if the problem-solving method is non- 
deterministic. Critiquing then requires that the system be able to comprehend 
the problem-solving actions of a community of experts in the field...The 
challenge is how to find a single representation that can simulate the coherent 
plan of a single expert when solving a problem, yet at the same time encompass 

all reasonable plans when acting as a critic. 

One way to address the challenges that Najem describes is the use of an explicit user 

goal model or user task model as a control structure in the critiquing engine. The 

key point is that the user model must be flexible in terms of representing the 

problem-solving behavior of experts. 
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Most expert critiquing systems do not have a user-modeling component. (A few that 
do were discussed in Chapter 3.) LISP-CRITIC and HYDRA both have user-model- 
ing components. LISP-CRITIC's modeling component consists of the set of concepts 
and functions that the system believes the user understands, a set of preferred 
functions, a set of "turned-off' rules, and a profile of past user actions. During 
problem-solving activity, the "turned-off' rules are removed from LISP-CRITIC's 
working rule set. The system's beliefs about which concepts and functions are 
known to the user are used to derive explanations for the critiques. HYDRA's user 
model is the set of kitchen requirements that the user defines throughout the design 
process. Thus HYDRA employs a user goal model as defined in Chapter 3. Of 
HYDRA's critiquing strategies, the specific critics are used to assess whether the 
design meets the user-established requirements. 

The DTM is a representation of an experienced roof designer's task structure. The 
activation pattern of the DTM determines which subset of rules in the knowledge 
base are applied to the existing design. Thus finer-grained control is attained over 
the content of the critiques offered to the user in comparison with the techniques 
used by LISP-CRITIC and HYDRA. 

The activation pattern of the DTM is updated continuously during the problem- 
solving session to reflect the system's beliefs about the user's changing design tasks. 
Due to the richness of the knowledge of relationships between tasks, SEDAR is able 
not only to apply knowledge from tasks in the designer's immediate focus of atten- 
tion, but also from those tasks that should be considered. When critiques are to be 
generated, the state of the DTM is used to define the appropriate subset of the 
knowledge base to apply to the existing design. At the same time, the DTM is used 
in a flexible way. The user is not compelled to alter their problem-solving activity 
to fit the system model, which is a possible problem with CHECS and is discussed 
in Chapter 6. 

SEDAR is used as a testbed for various critiquing strategies. Currently SEDAR has 
three critiquing strategies (error prevention, error correction, and design review) 
that are very different from each other in terms of timing, intrusiveness, and intent. 
In particular, the error prevention strategy, an active, before-task critic, was 
developed and tested. Few error prevention critics have been implemented because 
of the many difficult questions raised by such critics. First, what type of assistance 
should be provided? JANUS provides examples of good kitchen design that may help 
to prevent future errors from occurring. SEDAR takes a simple but more principled 
approach to generating preventative assistance. As the user adds to the design, 
SEDAR illustrates the "off-limits" constraint areas on the existing design. These 
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constraint areas are generated from the set of design codes in SEDAE's knowledge 

base. 

An evaluation of SEDAE was conducted to assess the effectiveness of each of these 
strategies in a performance-oriented critiquing system interacting with roof design- 
ers of the intermediate, practitioner, and proficient practitioner levels of expertise. 
Their comments about the strategies are discussed in Chapter 10. 

Another contribution that SEDAR, makes is its method of displaying constraints 
between design objects. SEDAR uses a combination graphical and textual display 
method. The graphical portion of the critiques consist of constraint areas displayed 

directly on the design window. 
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5  The Roof Design Domain 

This chapter will introduce fundamental definitions and concepts relevant to the 
design of flat and low-slope roofs. A basic understanding of the roof design domain 
will in turn facilitate explanations of the motivations, operations, and prob- 
lem-solving structure of SEDAR. A thorough discussion of the roof design domain 
is beyond the scope of this work. Readers interested in learning more about roofing 
design are referred to the work by Griffin [1982]. 

The first section describes the requirements and goals that a roof design must satis- 
fy. The two most important requirements are that the roof maintain both water- 
tightness integrity and structural integrity throughout its lifespan. Beyond these 
first two issues are a number of interrelated requirements that the roof designer 
must address. The major components of a flat or low-slope roof are presented in the 
second section. The process of creating a roof that meets the requirements specified 
in the first section begins with a high-quality roof design, which is argued in the 
third section. The fourth section describes the roof design task and how the natural 
structure of problem solving in roof design influences the system structure. 

Roof Requirements and Goals 

As stated above, two important requirements for a roof are that it maintains water- 
tightness integrity and structural integrity throughout the roofs expected lifespan. 
Loss of watertightness integrity, resulting in water leakage, may be due to a number 
of causes. Improperly protected wall edges and roof penetrations may allow water 
to enter the roof membrane. Besides being an added load capable of sagging a roof, 
the ponding of water as a result of insufficient drainage capacity or an incorrectly 
sloped roof serves to expose all weaknesses in the roofs waterproofing defenses. 
Ponding is especially dangerous for the class of flat and low-slope roofs described in 
this paper. To help prevent conditions like ponding, significant portions of roofing 
handbooks are devoted to establishing guidelines for proper rainwater transmission 
and collection in the roof field.    For example, the NRCA roofing handbook 



42 USACERL TM 96/99 

establishes a minimum deflection of 1/2 in. per foot* for low-slope roofs. The task of 
designing the water transmission and collection subsystem will be discussed later 
in this chapter. The roof must also maintain structural integrity in the face of both 
normal and adverse environmental conditions. Year-round, the roof must support 
the weight of not only the equipment mounted on the roof but also rainwater, snow, 
and even wet leaves. Strong winds may also cause an uplifting force on the roof. 
Since various materials expand and contract at different rates due to temperature, 
the roof design must be able to accommodate at least a small amount of movement 
of the building. However, the roof is still responsible for a great deal of the dimen- 
sional stability of the building itself and should not be overly flexible. 

A number of factors besides the above requirements influence the roof designer. 
Some of the factors that the roof designer must consider are shown in Figure 11. 
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Figure 11. Other requirements for roofs. 

1 in. = 25.4 mm; 1 ft = 0.305 m. 
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Major Roof Types, Subsystems, and Components 

A roof system is an assembly of various functional subsystems composed of inter- 
acting roof components designed, as part of the building envelope, to protect the 
building interior, its contents, and its human occupants from the outside environ- 
ment. This section describes the major types of roofs, functional subsystems, and 
constituent roof components that are found in a typical flat or low-slope roof system. 
Within SEDAR, design is performed at the roof component level. Designers may 
select components (or design objects) from a predefined palette and place them on 
the roof design. 

Major Roof Types 

This research considers two of the most common types of roofing systems, built-up 
and single-ply. Of the two, built-up roofing has historically been by far the most 
popular roof; however, in recent years single-ply roofing has made significant 
advances in the roofing market. Figure 12 shows that built-up and single-ply roofs 
have three major layers: the structural deck, the thermal insulation, and the mem- 
brane. The primary difference between built-up and single-ply roofs is the mem- 
brane material and construction, described below: 

• The Structural Deck—The structural deck transmits gravity, earthquake, and 
wind forces to the roof framing. The deck often provides the slope for runoff 
transmission and also serves as an anchoring surface for roof components. 

Membrane 

Insulation 

Structural 
Deck 

Figure 12. The three layers of a flat or low-slope roof. 
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Finally, the deck maintains the dimensional stability of the entire roof system, 

and is fire-resistant. Decks are made from a variety of materials, including 

wood (both timber and plywood), ribbed steel, and various forms of concrete. 

• The Thermal Insulation—The thermal insulation's primary purpose is to de- 

crease heating and cooling costs. Additionally, it provides horizontal shearing 

resistance and acts as a substrate upon which the roof membrane is applied. 

• The Membrane—Built-up roofing membranes consist of alternating layers of 

felts and bitumen, with a final surfacing layer on top. The membrane forms 

a semiflexible covering that completely covers the roof surface and shields the 

roof components underneath it. Bitumen (usually coal-tar pitch or asphalt) 

serves as the waterproofing agent; the felts serve to stabilize and strengthen 

the bitumen layers. The surfacing layer is normally gravel, crushed rock, or 

blast furnace slag. Its purpose is both to ballast the membrane against up- 

lifting forces and to protect the bitumen from life-shortening solar radiation. 

In single-ply roofing, the membrane is usually a single layer of rubber-like material 

instead of the felt/bitumen sandwich construction used in built-up roofing. One such 

type of material is ethylene propylene diene monomer (EPDM). Despite having the 

same basic construction as described for built-up roofs, single-ply EPDM roofs have 

many different requirements than built-up roofs. For example, since there is no sur- 

face aggregate to ballast the roof, an adhesive must be used to secure the membrane 

to the insulation layer. Additionally, since the EPDM material is intrinsically vapor 

retardant as well as water retardant, a vapor retarder is not needed in the roof design. 

Some Major Roof Subsystems 

The roof system itself may be divided into various functional subsystems, which are 

assemblies of interacting roof components. The study of the different subsystems 

is important because human designers tend to perform roof design in terms of 

designing individual functional subsystems. Examples of functional subsystems 

involving the roof system are the roof frame, the rainfall transmission and collection 

system, the heating, ventilating, and air conditioning (HVAC) system, and the roof 

ventilation system. Each of these functional subsystems involves a subset of the 

total set of roof components. Often the design of these subsystems is heavily con- 

strained by the existing building design. For example, the roof frame system, which 

provides the structural support for the roof, is not created by the roof designer; its 

design is the task of the structural engineer. Thus the columns, beams, joists, and 

other components of the roof frame are already established by the time the roof 

design is addressed. The same constraints hold true for the HVAC system—large 

roof-mounted components such as air-handling units, exhaust fans, and power vents 

are usually tied to specific locations. 
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One roof subsystem that is less constrained and is a major responsibility of the roof 
designer is the rainfall transmission and collection system, also known as the drain- 
age system. The designer must decide between having an interior or a peripheral 
drainage system. In an interior drainage system, the drainage of the roof is achieved 
by a system of slopes that lead rainfall into the interior of the roof, where roof drains 
attached to leaders (pipes) conduct the water down through the building interior. 
Leaders for interior drainage systems are almost always located at columns. Peri- 
pheral systems direct water away from the center of the roof to its edges, where water 
is conducted away from the roof surface by gutters. Both types of drainage systems 
have advantages and disadvantages. 

Interior drainage systems are often found on roofs with elevated edges (parapets) 
that serve to shield the roof-mounted equipment from visual sight. Interior drain 
pipes are heated by the building interior and continue to conduct water through cold 
winter weather, while peripheral drainage systems are subject to ice damming and 
metal distortion from repeated freeze-thaw cycles. The roof drains of interior drain- 
age systems may become blocked with debris (e.g., leaves fallen from trees) and may 
cease to provide adequate drainage. 

Water transmission within the roof field, whether using an interior or a peripheral 
drainage system, is achieved in flat and low-slope roofs by gently sloping the roof 
surface. For flat roofs, this sloping is achieved by tapering the thickness of the 
insulation boards underneath the roof membrane. For low-slope roofs, variations 
in the heights of vertical structural members (i.e., columns) is the primary source 
of slope. The inverted pyramidal pattern with the low point at the center containing 
an interior roof drain, shown in Figure 13, is an often-used sloping pattern. Another 
common sloping pattern is the saddle, shown in Figure 14, used in decks sloped only 
in one cross-section. Roof-mounted equipment also form barriers (or dams) to roof 
surface water flow. Crickets are required on the high side of such equipment to 
divert water flow around these obstacles. Figure 15 shows a properly placed cricket. 

Major Roof Components 

In this section the various roof components of functional subsystems are described. 
Figure 16 shows a cut-away view of a flat or low-slope roof with an interior drainage 
system. In addition to providing more detail for the major roof layers (structural 
deck, insulation, and membrane), it also shows roof-mounted equipment typically 
found on flat and low-slope roofs. Definitions of the following roof components are 
taken from the Roof Consultants Institute's Glossary of Terms [RCI 1994]. 
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Source: Griffin 1982. Used with permission of The McGraw-Hill Companies. 

Figure 13. The inverted pyramid drainage system. 
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Source: Griffin 1982. Used with permission of The McGraw-Hill Companies. 

Figure 14. The saddle drainage system. 
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Equipment 

Cricket 

The roof frame's main elements are columns, 
beams, and joists. Columns are the struc- 
tural members used in a vertical position to 
transfer loads from the main roof beams, 
joists, etc. to the building foundation. Beams 
are the primary horizontal members sub- 
jected to bending loads from the roof. Joists 
are secondary horizontal members usually 
laid perpendicular to the beams. 

Figure 15. A cricket on the upstream side of 
roof-mounted equipment. 

The fluted metal deck lies on top of the roof 
frame. The rigid insulation lies on top of the 
deck. Insulation usually comes in rectangu- 
lar boards, which may be mechanically fas- 
tened to the deck.  The fastener pattern for 

the insulation on this roof is shown in the upper left corner of the diagram. This roof 
has a built-up membrane, which requires ballast for anchorage. This is shown in 
the lower portion of the roof. 

Besides the major components, additional roof components are shown in Figure 16. 
Discussion of these additional components begins with the sump and continues 
clockwise around the building. 

Sumps are rectangular depressions in the surface of the roof around the open- 
ing to a drain and serve to promote drainage. 
Roof drains are devices that allow the flow of water from a roof area. Often a 
filter or a grill covers the drain to prevent debris from entering. 
Roof-mounted equipment like mechanical units or air-handling units (not dis- 
played in the figure) provide various functions for the interior of the building. 
This equipment is often mounted on wood curbs and supported by the under- 
lying roof frame. Figure 16 also shows an example of drain piping or leaders. 
The drain piping conducts water from the roof drain through the interior of the 
building. Here, the piping runs down the building wall instead of a column. 
Scuppers are used as overflow relief for interior drainage systems. They are 
openings through the parapet wall above the roof deck. Aside from the scupper 
itself, a system consisting of a conductor head, drain leader, and splash block 
complete the overflow drainage system. 
Moving to the lower portion of the roof, roof hatches allow access to the roof. 
They are typically hinged panel units that are fastenable and weathertight. 
Pavers or walkways are used to provide paths from the roof hatch to roof- 
mounted equipment. The roof membrane is easily damaged by foot and repair 
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equipment traffic, and thus is protected from normal traffic patterns by these 
components. 

•       The parapet wall is often covered by a metal coping, which protects the wall 
from exposure to weather. 

Surrounding the building in Figure 16 are numerous detailed views of cross-sections 
of the roof. These construction details specify the roof design at a lower abstraction 
level. These drawings are typically standardized for the type of roof and the roof 
component. Sources of construction details include the NRCA roofing handbook and 
component manufacturers. 

Why Roofs Fail and What Is Done To Prevent Failures 

Roof fail for a variety of reasons. A common causality chain [Griffin 1982] may look 
like the following: 

1. The designer produces a design of marginal quality and skimps on the roofing 
system specifications and details. 

2. The general contractor, disregarding the roofer's qualifications and ignoring 
the application technique, selects the low roofing bid and relies on the roofing 
manufacturer's inspection to verify that the roof subcontractor used proper 
construction materials and techniques. 

3. The roof subcontractor, if given leeway on the roof design, may opt to select a 
cheaper way to satisfy the roof specifications. 

4. The manufacturer's inspector, who is often the sales representative who sold 
the materials to the roof subcontractor, is charged with inspecting the work of 
the roof subcontractor on whose continued good will the representative de- 
pends on for future sales. 

Thus assigning responsibility for a roof failure is a formidable challenge. Often 
several parties are at least partly at fault. However, the roof designer has a respon- 
sibility to do all that he or she can to ensure a durable, high-quality roof design. 
This means creating a good (instead of marginal) complete set of roof drawings and 
specifications. An example of a high-quality roof design is one in which water shed- 
ding is preferred over water resistance as a means of keeping water out of the 
building. The reason for this is that practicable field techniques of applying a roof 
often fall far short of the thoroughness and precision found in the laboratory. 
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Problems ranging from thin spots in the top coat of bitumen to a simple puncture 

from a dropped tool may result in the failure of the roof membrane. However, if the 

roof is designed to shed water effectively, it will be able to survive some imperfec- 

tions without leaking. 

The design/review protocol of A/E/C firms is an attempt to improve the quality of 

roof designs by subjecting the designs to several review sessions when various 

sources of expertise are used to discover and resolve problems with the roof design. 

The sources of expertise include paper checklists of common design flaws, handbooks 

of design codes, and the experience of the reviewer. 

The Roof Design Task and Decomposition 

To understand how to improve on the existing design/review process, protocol 

analyses were conducted of roof designers creating roof plans starting from a blank 

drawing board. As was mentioned previously, the act of designing a roof is divided 

into a set of tasks oriented toward creating particular subsystems of the roof system. 

Subsystems are created by the selection and placement of certain types of roof com- 

ponents (design objects). Different groups of tasks are performed at each stage of 

the design process (conceptual, intermediate, detailed, and final design). This 

section provides a description of the decomposition of the roof design task into its 

major subtasks and the types of interdependencies between subtasks. The contents 

of the DTM reflect those tasks addressed in the intermediate stage of roof design. 

A portion of the DTM is shown and described for this stage. 

The Conceptual Stage of Roof Design 

During the conceptual stage of roof design, the designer establishes the fundamental 

characteristics of the roof. Because the roof plan is usually one of the last systems 

of the building to be completed, the other building systems usually impose con- 

straints on the roof. One of these constraints is the shape or footprint of the roof. 

Other characteristics are the type of roof (built-up or single-ply), the insulation 

material, and the type of drainage system (interior or peripheral). The underlying 

design of the building may dictate what types of equipment will be mounted on the 

roof and where that equipment will be placed in the roof field. For example, the type 

and location of air-handling units are often determined from conferences among the 

design team. The structural engineer then designs the framing plan to accommo- 

date the equipment load at the decided location, and the mechanical engineer 

designs ductwork to lead to and from the air-handling unit. Thus the location of the 

air-handling unit on the roof is completely determined by the original collaboration. 
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Another case of this is the roof deck material, which is often determined by the 

structural engineer. 

The Intermediate Stage of Roof Design 

Architectural layout. After the determination of the basic characteristics of the roof, 
the designer begins the architectural layout of the roof. During this stage, the 
designer works with a top-down, two-dimensional view of the roof. The focus of the 
designer is to lay out the various roof subsystems at the level of major roof 
components (design objects). Designers focus on two roof subsystems during this 
stage—layout of roof-mounted equipment and design of the drainage system, 
although numerous other subsystems also must be addressed during this stage. 

In general, the layout of roof-mounted equipment is usually addressed before all 
other roof subsystems, especially if the existing building design imposes constraints 
on the roof plan. As discussed in the previous section, the location of air-handling 
units may already have been decided upon at this stage. The location of other major 
roof penetrations, such as chimneys, fume hoods, or roof access hatches, may also 
be similarly constrained. Even less constrained roof-mounted equipment like anten- 
nae, roof vents, and moisture relief vents are also addressed early during the 
intermediate stage of design. 

An important task related to equipment layout is that of walkway layout. Each 
major piece of roof-mounted equipment must be accessible for repair from a roof 
access hatch or a wall-mounted ladder. Because roof membranes are easily dam- 
aged by traffic, the roof designer must lay out a network of plywood, metal, or rubber 
walkways that interconnect the serviceable equipment and the roof access mechan- 
ism. The walkways protect the membrane from abrasions and penetrations result- 
ing from maintenance activities. 

The second major subtask is designing the rainfall transmission and collection sub- 
system. Whether an interior or peripheral drainage system is used has already been 
determined at this stage. The drainage subsystem involves a number of roof 

components: 

• Layout of sloped areas for proper water flow to drains or to the periphery of the 
roof, which involves the placement of inverted pyramid, saddle, and cricket 
type slopes about the existing roof design 

• Placement of drains at low points in the roof field 
• Design of the overflow relief system, which may include both scuppers at the 

roof periphery and overflow drains near roof drains away from the roofs edges. 
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During the intermediate design stage, the roof designer lays out various building 
subsystems at the same level of detail. Thus there is the potential for many inter- 
task conflicts (e.g., a walkway strip may interfere with the water flow from a high 
point on the roof to a low point with a drain). When conflicts occur, the relevant 
subsystems are usually "tweaked" to resolve the conflict rather than completely 
redesigned. The ordering of the satisfaction of subtasks is especially important here. 
By starting with the most highly constrained subtask and then using the result to 
constrain subsequent subtasks, the designer usually avoids egregious mistakes that 
necessitate substantial redesign. As has been observed for many types of problem- 
solving tasks, the human designer first searches for a satisficing solution instead of 
an optimizing solution. 

How the DTM represents the roof design task. The representation of the above roof 
design tasks and their interrelations is the DTM. Figure 17 shows a portion of the 
DTM representing a subset of the intermediate stage design tasks (mostly those 
described above) and the relations between them. The tree is a part-of hierarchy 
(left to right) of roof design tasks. The root of the tree is the roof-layout task, which 
is broken into its constituent subtasks, each representing the design of a different 
roof subsystem. These are in turn divided into more specific subtasks. The leaves 
of the hierarchy describe the layout of the specific types of roof components which, 
taken together, form a particular functional subsystem. 

The relationships described in the previous part of this section are also represented 
in the DTM. The fact that the layout of roof-mounted equipment is generally 
accomplished before addressing other roof subsystems is expressed by the solid 
arrow between the equipment-layout and the roof-component-layout tasks in 
Figure 17. Such links are known as before-task relations, and express temporal 
orderings between the accomplishment of tasks. A similar situation is true for walk- 
way layout. Design of the walkway system cannot begin until the various 
roof-mounted equipment are placed in the roof field. Thus a set of before-task 
relations exist between the walkway-layout task and the air-handler-layout, 
chimney-layout, and hatch-layout tasks. 

Potential interferences between roof subsystems are marked by the dotted double- 
arrowed lines (interferes-with relations) between tasks in Figure 17. For this 
example, only the interferes-with links involving the drain-layout task are shown. 
Thus the potential interference between drain layout and walkway layout described 
previously is represented by the dotted double-arrowed line between the drain- 
layout task and the walkway-layout task in Figure 17. The drain-layout task also 
has interferes-with relations with the other subtasks of the general equipment- 
layout task. 



USACERL TM 96/99 53 

1 

CO 
.c 
C/) ^j 

1 ~i c_ o o > 
*—f m 
CO _i 

•+-- 
c 
CD 
> 

i 
CO 
0 

3 
O ^ ~ 
CO 

_1 
1 

CD   O 

K 
05 £ CO   CO 

CD 
Q. CO 
Q. 
3 Q 
O 

CO 

1° 
6^ 

3 
O 
>< 
CO 

CO 

0 
c 
CD 

CL 

0 *-« 
W 

CO 
c 
CO 

r c .* -*—» 
g CO 

co c 5 c 
CO H-* u CO o 
CD 
1_ 

**— 
o 

CD i_ 
O 

CD 
CD 

CD 
i_ 

CD 
t 
CD 

co 
CD 

co 
XJ ■4—» 

c 
Q. 

0 

g   I 
E c? 
CD 

PS 

c 
0 
c 

E p 

o 
P i 

b o 

0 "5 

-I 
LU 

O   >, 
CC  co 

cu 
T3 
O 

en 
co 

cu 
c 

"5> 
0) 
a 

o 
c 
o 
c o a 
< 

0) 
k. 
3 

E 



54  USACERL TM 96/99 

The discussion of the DTM's relation to the task structure of experienced roof 
designers in this section has focused on the representation of the different types of 
dependencies between roof design tasks. In the next chapter, the structure and use 
of the DTM in SEDAR are described in greater detail. 

The Detailed Stage of Roof Design 

After the general layout of the roof subsystems is completed, the designer adds 
additional detail to the drawing during the detailed design stage. For example, the 
designer will add construction details at the side of the drawing showing cross- 
sections of the roof construction like the subdiagrams of Figure 16. These include 
roof penetration details for the roof-mounted equipment and flashing details for the 
roof perimeter. Instead of creating new details for every design, generally accepted 
details are often copied onto the design from handbooks [Ramsey 1994; NRCA 1985; 
RCI 1994]. The designer is also responsible for creating a specification document 
that itemizes the roof components in the design and includes additional comments 
for the construction team. 

The Final Stage of Roof Design 

The final stage of roof design is devoted to holding a final design review and making 
small changes to the design to accommodate the reviewer's comments. By the end 
of this stage, the roof design (both the drawings and the specifications) is complete. 

Chapter Summary 

Design of the roof system of a building is a complex, multidisciplinary activity. Com- 
munication and coordination between the architect and the other members of the 
design team (e.g., the structural, process, mechanical, and electrical engineers, and 
the other architects) is necessary to ensure that all the requirements of the roof are 
met with the roof design. Besides discussing roof requirements, this chapter intro- 
duced the major components of the roof and their role in the overall roof system. 
Finally, observations of human roof designers have provided insights as to how they 
divide the roof design task and the ordering and dependencies among the resulting 
subtasks. These insights helped to determine the structure and function of the DTM 

used by SEDAR. 
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6  System Architecture and Operation 

This chapter describes the structure and function of the DTM in the context of the 
overall system architecture and its operation. Additionally, this chapter establishes 
a working vocabulary of system components and operations that will be used exten- 

sively throughout the rest of this report. 

The description of the DTM structure begun in the previous chapter is completed in 
the first part of this chapter, which deals with the system architecture. The system 
consists of four major components: the critic management agent, which controls sys- 
tem operation; the blackboard, which contains the system's shared data structures; 
the critic agents, of which only one, the flat/low-slope roof agent, is currently imple- 
mented; and the user interface, which is the medium of interaction between the 
human user and the critiquing system. 

The use of the DTM in the basic operating cycle to direct critiquing in a focused but 
flexible way has thus far been hinted at but not discussed in detail. The second part 
of this chapter describes how the DTM is used in the context of the basic operating 
cycle, called the iterative critiquing cycle. The iterative critiquing cycle is based on 
the critiquing interaction model presented in Chapter 1. 

The third part of this chapter describes the error prevention, error correction, and 
design/review critiquing strategies in greater detail than in Chapter 2. A full 
example of the critiquing strategies discussed in this section may be found in 

Chapter 8. 

System Architecture 

The system architecture is presented first to establish a working vocabulary before 
describing the other aspects of the system in more detail. Conceptually SEDAR con- 
sists of four major components: the Critic Management Agent (CMA), the Black- 
board, the Critic Agents, and the User Interface. Figure 18 is a diagram of the 
components and their interrelationships. Each of these components are described 
in more detail in the following subsections. 
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The Critic Management Agent 

The CMA is the control unit of the expert critiquing system. It receives and inter- 
prets descriptions of user actions from the user interface, updates the representa- 
tions on the blackboard, selects which critiquing strategies to apply, and activates 
the proper critic agents. Currently the CMA selects from one of three critiquing 
strategies: error prevention, error correction, and design review. After the critiqu- 
ing process is finished, the CMA gathers the generated critiques, translates them 
into critique display descriptions that the user interface understands, and sends 
them to the user interface. The CMA operates in a loop called the iterative critiqu- 
ing cycle, which is described in the second part of this chapter. 

The Blackboard 

The blackboard contains the shared data structures of SEDAR: the DTM, the 
Design Representation, the Requirements Hierarchy, and the Materials Hierarchy. 
While the basic structure of the DTM has been briefly described in Chapter 5, a 
more complete description of its structure and use are given below. 

The Designer's Task Model. The DTM is a user task model for roof design based 
on analysis of experienced roof designers. It is used by the CMA to generate the 
most appropriate set of critiques for the designer's focus of attention and the existing 
state of the design. At the same time, the use of the DTM is flexible in that it allows 
the user to control the problem-solving activity and does not force the user along 
predefined solution paths. This capability is accomplished by mapping user actions 
to activation patterns that are the system's beliefs about the current focus of atten- 
tion of the user on specific roof design tasks. The activation patterns determine the 
subset of the knowledge base that is applied in the current critiquing episode. Fur- 
thermore, the ordering of critiques presented to the user is also influenced by the 
activation pattern of the DTM, which is updated every time the user performs an 

action on the design. 

The tasks that a roof designer performs to complete a roof design are arranged 
hierarchically in a tree-like structure, shown in Figure 19. The figure displays the 
tree from left to right, with the most general task (roof-layout) at the left. This task 
represents the overall task of roof design. The heavy left-to-right lines connecting 
the tasks are part-of relationships (decompositions) between a task and its subtasks; 
for example, the equipment-layout task is composed of four subtasks, walkway- 
layout, air-handler-layout, chimney-layout, and hatch-layout. Intermediate nodes 
represent the task of designing functional subsystems of the roof; for example the 
membrane-layout task encompasses the process of designing the roof membrane 
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system, which in turn may be decomposed into more specific subtasks. Finally, the 
leaf nodes of the tree (e.g., scupper-layout, air-handler layout) represent the layout 
of particular classes of design objects. 

Besides thepart-o/relationships, the DTM supports two other types of relationships, 
represented by the interferes-with and before-task relations. Before-task relations 
encode observations of expert designers' task orderings, and are usually relations 
among tasks at the same level in the DTM. These relations are shown with the 
part-of relations shown in Figure 20. The task connected at the tail of the arrow is 
constrained to be accomplished before the task connected to the head of the arrow. 
One such relationship is among the footprint-layout, equipment-layout, and roof- 
component-layout tasks. Expert roof designers usually lay out the footprint of the 
roof before placing mechanical equipment in the roof field. As has been discussed 
in Chapter 5, the expert roof designer also tends to lay down large, heavily con- 
strained pieces of equipment before dealing with the drainage system design, flash- 
ing design, etc. These types of temporal orderings of tasks are captured by the 

before-task relations. 

Knowledge about potential interactions between tasks is represented by inter- 
feres-with links. Figure 21 shows the interferes-with relations for a single task, 
air-handler-layout. These links are static in nature and encode a priori knowledge 
about which tasks are likely to produce interactions on roofing designs. These 
relationships exist typically among tasks that are addressed during the same stage 
of design. For example, during the intermediate design stage the designer will work 
on many of the immediate subtasks of the equipment-layout task, like walkway- 
layout, air-handler-layout, etc. Because each one of these tasks may interfere with 
each other, it is necessary to denote their interdependencies using interferes-with 

links. 

Currently only the interferes-with and part-of relations are used in SEDAR. At this 
point, the before-task relations represent a capability of critiquing the task-ordering 
performed by the user. This capability has not been implemented because of the 
desire to make SEDAR as flexible as possible with respect to the individual users' 
preferences. A principled approach to critiquing user task ordering involves not only 
the before-task relations, but a principled analysis of which functional subsystems 
of the roof are the most heavily constrained in a given initial roof design specifica- 

tion. 

The DTM can have different activation patterns during the design process that 
encapsulates the system's beliefs about the designer's goals and current focus of 
attention. Each task may have one of three possible activations. Tasks with focus 
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activation (or focus tasks) are those related to the designer's immediate actions. 
Each task is linked to a set of design objects, so when the designer selects an object 
for placement on the roof design, all tasks that had a focus activation previously are 
changed to being active. The new set of focus tasks is composed of all tasks that 
include the new object's type in their object set. Tasks that are made active either 
had a focus activation before or are related to the new set of focus tasks by interferes- 
with relations. Thus the active set of tasks includes those tasks previously within 
the user's focus of attention and those that should be considered given the current 
focus. Finally, inactive tasks are those that have not yet been addressed by the 
designer and are not related to the focus set of tasks by interferes-with relations. 
Figure 21 shows an activation pattern resulting from the selection of an air- 
handling unit by the designer. The air-handler-layout and equipment-layout tasks 
are focus, and most of the active tasks are related to the air-handler-layout task by 
interferes-with relations. The deck-layout task is active because it had a focus 
activation in the past. Thus SEDAR does not use the DTM to direct the user along 
a solution path. Instead, it interprets and follows the user's problem-solving actions 

flexibly using the DTM. 

The user also has direct control over the state of the DTM. Through the user 
interface the user may switch tasks on or off. All tasks are initially on, and remain 
on until the user turns them off. Tasks that are off are not used to generate cri- 
tiques no matter what their activation (focus, active, or inactive). This ability allows 
the user to have the final determination of what tasks are involved in the critiquing 
process. For example, if the user feels that critiquing on a particular task is 
inappropriate for the existing design situation; he/she is then able to adapt the 
system to his/her needs by turning the task off. 

Each task in the DTM is associated with a set of design codes that pertain to the 
design of the particular roof subsystem associated with the task. After the activa- 
tion pattern for the current user action has been established, all of the design codes 
associated with the focus and active tasks form the subset of the knowledge base 
applied to the existing design. Since the subset of rules follows the changing activa- 
tion patterns of the DTM, the critiques generated by this process are closely related 

to the user's "focus of attention." 

After critiques are generated by applying the subset of design codes to the existing 
design, the critiques are ordered according to the DTM's activation pattern. 
Critiques related to focus tasks are placed before those related to active tasks. This 
ordering ensures that the critiques most salient to the user's current focus are 

shown first. 



USACERL TM 96/99 63 

An interesting comparison may be made between SEDAR's use of the DTM and the 
plan-recognition system CHECS. In CHECS, the user's actions were used to find 
the most appropriate plan from a plan library. If the user's actions could not be 
explained by any plan in the library, CHECS would not be able to continue with its 
collaboration process. SEDAR's flexible use of the complete DTM may be inter- 
preted as being equivalent to having a maximal set of plans given the component 
design tasks. Figure 22 shows this comparison. The individual plans of the CHECS 
plan library may be thought of as paths through the DTM. Thus Plan 1 in the plan 
library corresponds to the highlighted "Plan 1" path through the DTM. 

Under this interpretation, the DTM of SEDAR also has the ability to represent 
multiple interacting individual plans in CHECS (Figure 23). The individual plans 
A-B-C and A-D-G-J are represented as a single task activation pattern in the DTM. 

The Design Representation. The Design Representation is SEDAR's internal 
representation of the design. It consists of a set of design object instances and the 
semantic links between the design objects. The design representation captures the 

Plan 1 

Plan 2 

CHECS 
Plan 

Library 

iy  CD   (i 
"Plan 2" "Plan 4" "Plan 5" 

SEDAR 
Designer's Task 

Model 

Figure 22. The CHECS Plan Library and SEDAR's Designer's Task Model. 
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system's knowledge of the structure of 
the artifact being designed. As the user 
modifies the existing design, the set of 
design object instances and semantic 
links change to reflect the altered de- 

sign. 

The Requirements and Materials Hier- 
archies. The Requirements Hierarchy 
is a set of goals or functional require- 
ments that the roof design must satisfy. 
The existence of this hierarchy reflects 
the distinction between user task mod- 
els (the DTM) and user goal models. 
SEDAR's requirements hierarchy is 
similar in nature to the user goal model 
of HYDRA, which is also used to repre- 
sent the design's functional requirements. However, SEDAR's set of functional 
requirements is currently static; unlike HYDRA, which allows dynamic redefinition 
of its requirements throughout the design process, SEDAR's set of functional 
requirements is derived from the set established by the conceptual constructibility 
model for low-slope roof systems described in East et al. [1995]. Each functional 
requirement is linked to a set of design codes describing design conditions that 
satisfy (or violate) the requirement. These design codes constitute the construct- 

ibility agent described later in this section. 

The interactions between materials on a roof should be considered also for good roof 
design. The Materials Hierarchy contains the various materials used in roofing 
systems. Individual roof components inherit not only from their parent object types 
but also from a material; for example, a roof deck may be made of steel, wood, or a 

type of concrete. 

Figure 23. Representing interacting plans with the 
Designer's Task Model. 

Critic Agents 

In a fully-implemented version of SEDAR, a collection of agents perform design 
analysis and evaluation. These agents are called design code critic agents (DCCAs). 
Each critic agent represents a different perspective on the design process and con- 
tains design code rules that pertain to the agent's engineering discipline or design 
subtask. Thus each DCCA performs a small portion of the overall critiquing task. 
The only agent currently implemented in SEDAR is the constructibility DCCA. The 
constructibility agent contains the design codes addressing roof operability and 
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constructibility taken from the NRCA Roofing and Waterproofing Manual for Low- 
Sloped Roofing [1985] and other sources of design and review for low-slope and flat 
roofs. In future versions of SEDAR, the constructibility agent will be one of a 
collection of agents performing critiques on the design. The variety of agents reflects 
the interdisciplinary nature of the roof design task. Besides the constructibility 
DCCA, there might be a structural engineering DCCA, a mechanical engineering 
DCCA, a materials DCCA, etc. Each of the agents represents a perspective from a 
different engineering discipline. For example, the structural engineering DCCA 
would critique the roof framing plan supporting the roof and how loads on the 
surface of the roof are supported by the underlying deck and framing structure. 

Design codes in DCCAs are either object-relation or object-existence codes. Object- 
relation design codes express desired spatial relationships between roof objects. A 
violation of an object-relation code is expressed as an interference between two or 
more existing objects on the design. Object-existence design codes are used in 
SEDAR's design suggestion capability. A violation of an object-existence code is 
expressed as a possible object to add to the design. 

Every design code in a DCCA consists of three portions: the rule frame, the rule 
trigger, and the rule condition. Figure 24 shows the representation for a particular 
design code. The rule frame contains information about the design code, the rule 
trigger contains a subset of all the firing conditions for the design code, and the rule 
condition contains the rest of the firing conditions. The design code is split into 
trigger and condition portions for efficiency purposes. 

The User Interface 

The user interface is an augmented computer-assisted design system that allows 
direct manipulation of both the design and the criticism generated by SEDAR. This 
part of the system may also be termed the "front-end" of SEDAR—it is the medium 
through which the human designer and the critiquing system interact. Further- 
more, the user interface constitutes a powerful design environment within which the 
user may compose a design, control the critiquing system, and view the generated 
critiques. The interface is described in greater detail in Chapter 8. Figure 25 is a 
screen capture of the SEDAR interface screen, which shows a partially completed 
roof design and a critique generated by the system. Displayed in Figure 25 is the 
Action Menu from which the user selects operations to perform on the design. The 
interface is divided into three windows: the large area containing the top-down view 
of the roof design is the Design Window. Critiques generated by the system are dis- 
played here. The small window at the upper left corner of the Design Window is the 
Suggestion Window. Critiques that involve design suggestions use this window in 
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addition to the Design Window. In Figure 25, the current suggestion is that a hatch 
be placed on the design to allow access to the roof.from below. The suggested hatch 
object is shown in the Suggestion Window. Finally, the Dialog Window at the 
bottom of the Design Window displays textual information, including prompts and 

the textual portions of critiques. 

System Operation: The Iterative Critiquing Cycle 

SEDAR uses the iterative critiquing cycle, which forms the framework in which we 
organize all of SEDAR's actions. The cycle has six stages, shown in Figure 26. Each 
phase of the cycle is annotated with the components that are involved in its 
completion. While an overview of each of the stages is presented below, specific 
stages are presented in greater detail in subsequent chapters. The Update DTM 
and Design Representation stage has already been partially addressed in this 
chapter and is described in more detail in this section. The Generate Critiques and 
Display Critiques stages are critical parts of the overall process that have not been 
described yet, and will also be discussed in greater detail in this section and later 

chapters. 
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Figure 26. The iterative critiquing cycle. 
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Stage 1: Receive User Input 

The user selects an action to perform, such as adding, moving, deleting, or resizing 
existing design objects, or selecting goals for review. Depending on the selected 
action, the interface may query the user for additional information. The interface 
then sends a message to the critic management agent notifying it of the user's action 
and providing information that the critic management agent will need. 

Stage 2: Update the Designer's Task Model and the Design Representation 

Upon receiving the message from the user interface, the first task of the CMA is to 
update the DTM. Specifically, the CMA uses the previous DTM activation pattern 
and the current user action to decide which tasks in the design goal model to make 
focus or active for the current critiquing session. This method of goal activation 
allows for greater flexibility in the interaction between the user and the system. For 
example, some users may like to operate multiple tasks simultaneously. While 
SEDAR does not actively enforce a particular ordering of satisfaction of its goals, it 
does have the capability to provide suggestions as to which tasks should be dealt 
with before or concurrently with the current set of tasks. 

The second task for the CMA is to modify the design representation according to the 
user action. For example, the CMA may make a "temporary" object or a "real" 
object. If a real object is instantiated on the design representation, additional 
semantic links may also be created at this time to link the new design object to the 
previously existing objects. 

Finally, the critiquing strategy is selected. Depending on the user's actions, the 
CMA selects from the error prevention, error correction, and design review critiqu- 
ing strategies. The method of selection is static in nature and is described in greater 

detail in Chapter 8. 

Stage 3: Forming the Active Rulesets 

During this stage, the set of design codes to be applied for the current critiquing 
cycle is created. Since the current implementation contains a single DCCA, all 
design codes are taken from the constructibility agent. Only the rules linked to 
tasks with focus and active activations in the DTM are included in this set. If there 
were additional DCCAs available, the set of design codes for each DCCA would then 
be combined into a single large set of design codes. 
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The CMA may then modify the rules in the active ruleset, depending on the 
critiquing strategy. This modification is done to focus the activity of the next stage 
on relevant objects, and to improve efficiency. This operation is described in detail 

in Chapter 8. 

Stage 4: Perform the Design Evaluation 

The active set of design rules is then applied to the existing design on the black- 
board. Each design code rule is a condition-action rule taken from a published 
handbook of low-slope roofing specifications [NRCA 1985]. If the preconditions of 
a design code rule match a set of features in the design representation, a design code 
violation is specified with respect to those features. In every critiquing cycle, only 
a subset of the knowledge base of rules is applied to the design. This improves the 
efficiency of the design evaluation stage and, more importantly, ensures that the set 
of critiques and suggestions provided by the system is appropriate given the state 
of the design and is relevant to the user's current focus. 

Stage 5: Generate Critiques 

In this stage, the violation data from the previous stage are collected by the CMA 
and are used to generate the critiques seen by the user. An overview of this 
important element of the process is described here—Chapter 8 describes the 
transformation process in greater detail. 

Critiques have separate graphical and textual portions. The CMA uses design-code 
specific information to create a graphical critique component in a graphical language 
understood by the user interface. In particular, the violation data is used to 
instantiate unbound variables in a stored graphical component template. The 
textual component generation process follows the graphical component generation. 
An explanation template containing unbound variables is instantiated with the 

violation data. 

During this stage the critiques are also arranged in order of display to the user. The 
DTM plays an important role here—the critiques most relevant to the current goals 
of the user have greater priority over the rest of the critiques, which are arranged 
according to a serialization of the before-task partial goal ordering. 

Stage 6: Display Critiques 

Depending on,the critiquing strategy, the user interface may show the graphical/ 
textual critiques immediately or by user request.  The error prevention strategy 
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displays all of the generated critiques on the drawing without user prompting. The 
error correction and design review strategies, however, simply display a notification 
to the user that critiques were found. 

After the final Display Critiques stage, the system loops back to Stage 1 and waits 
for a user action on the design. The process terminates when the user exits from 

SEDAR. 

Critiquing Strategies 

SEDAR currently supports three distinct critiquing strategies: error prevention, 
error correction, and design review. The strategies differ along many of the charac- 
teristics discussed in Chapter 2 of this report—timing, intrusiveness, and intention 
being the most important issues. The error prevention and error correction strate- 
gies are incremental and active in nature and are situated at the design-object 
activity level of user actions. The basic unit of user activity that encapsulates the 
iterative critiquing cycle described in the previous section is design object selection 
and placement. In other words, these critiquing strategies are applied when individ- 
ual objects are added to the design. This feature has both advantages and disadvan- 
tages, which are described below and in Chapter 10. The design review critiquing 
strategy is a passive, batch-processing critic similar in nature to early critiquing 
systems. 

Each critiquing strategy is presented in more detail below and is illustrated in 
Chapter 8's example. Discussed in particular is how each strategy fits into the 
general framework of the critiquing interaction model presented in Chapter 1, and 
its implementation in the iterative critiquing cycle. 

Error Prevention Strategy 

Preventive strategies attempt to steer users away from anticipated error patterns 
before they have the chance to commit them. Since such strategies must take an 
aggressive approach to advice giving, they are active and either before-task or 
during-task critics. The difficulty with preventive measures is that it is difficult to 
decide what type of advice to give—in any situation, there are many possible errors 
that the user could make. The challenge is to provide useful and appropriate advice 
to the user in a clear, nonoverwhelming way. Given this set of conditions, few 
expert critiquing systems employ before-task, active error prevention strategies. An 
example of a system that offers preventative advice is JANUS, which offers ex- 
amples of good kitchen designs to the user in response to critiques about the current 
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design. Displaying good kitchen designs to the user may influence them to follow 
the example in their own work, thereby avoiding other potential pitfalls that are 
eliminated by the good design. 

The error prevention strategy of SEDAR is of a more principled and direct nature. 
The strategy shows the user all of the "off-limits" (constraint) areas on the design as 
defined by the design codes before the object is placed on the design. It is an incre- 
mental and active strategy. As was noted in the introduction to this section, the 
error prevention strategy operates at the design-object activity level. SEDAR 
divides the user's object-placement activity into two portions (or acts). The first act 
is object selection, where the user selects the desired design object from a set of 
design objects. The second act is the actual location and placement of the object on 
the design. The error prevention strategy occurs after the object selection act and 
before the object placement act. After a design object is selected and before the user 
is allowed to place the object on the design, the constraint areas are shown on the 
design. The constraint areas provide clear cues as to where not to place the new 
object, and only the areas that pertain to the selected object's type (and focus of 
attention of the user) are shown. 

The user may turn this strategy on or off in the user interface. When on, the 
strategy runs incrementally as described above. When the strategy is off, no advice 
is given after the act of object selection. 

Error Correction Strategy 

The error correction strategy complements the error prevention strategy. Instead 
of being preventive in nature, this strategy checks a newly placed object for viola- 
tions according to the design codes in the constructibility agent. The strategy also 
operates at the design-object activity level, and is invoked immediately after the 
object placement act. Its purpose is to perform a recheck of the existing drawing 
against relevant design rules and to propose simple design suggestion cues. Unlike 
the error prevention strategy, the error correction strategy does not display the 
generated critiques immediately on screen. Instead, it displays a message stating 
that violations of design codes were found. The user may choose to ignore this mes- 
sage and to continue on with the design. Thus the error correction strategy is less 
intrusive than the error prevention strategy. 

SEDAR's error correction strategy is most like that of JANUS and its successor, 
HYDRA. HYDRA's generic critics, which check for desirable spatial relationships 
among kitchen design objects, are very similar to SEDAR's error correction strategy. 
The principal difference is in the content of the critiques and how they are displayed. 



72 USACERL TM 96/99 

HYDRA's problem-specific critiques are only textual; general, nonproblem-specific 
design examples are shown as a part of the hypertext argumentation system. 
SEDAR generates both problem-specific textual and graphical critiques. The 
graphical critiques are shown directly on the design. For example, two air-handling 
units too close together are highlighted and encircled on the design. Additionally, 
critiques in HYDRA are shown automatically when generated and thus are more 
intrusive than SEDAR's correction strategy. Like the error prevention strategy, the 

error correction strategy may also be turned on or off. 

Design Review Strategy 

The final critiquing strategy can be viewed as a passive, after-task, batch-processing 
critic. Such critics have been integral components of critiquing systems since 
CRITTER. In SEDAR, the design review strategy serves as an interactive review 
tool that may be used by either the designer or reviewer. A designer might choose 
to activate the design review strategy at various points in the design process (e.g., 
before a review is conducted) to discover errors. A reviewer might use this tool on 
a design to be reviewed to guarantee that the design satisfies basic constructibility 
requirements. The benefit of the passive, batch-processing critic is that the user has 
complete control over when and how the critic is activated, thus eliminating the 
issues of timing and intrusiveness so critical to active, incremental critics. The prob- 
lem with such strategies is that these may be applied too late to prevent or to correct 
errors made earlier, which may lead to some redesign if the problem is severe. 

Automated reviews on the existing design are performed by selecting subsets of 
tasks in the DTM for review. As discussed in Chapter 1, one primary problem of the 
current design/review process is that the prohibitive cost of performing design 
reviews has a detrimental effect both on the thoroughness and frequency of the 
reviews. The design review strategy is a means of better integrating the design and 
the review components of the design/review process. As an automated review sys- 
tem, the strategy is both more complete and faster than traditional design reviews. 
Furthermore, reviews may be conducted at any point in the design process. The 
combination of these two factors leads to more frequent and more complete design 

reviews. 
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7  Knowledge Representation 

Critiquing is a knowledge-intensive process. The representation employed to encode 
knowledge is a significant factor in how effectively the knowledge is exploited in the 
system. This chapter describes and motivates the various forms of knowledge repre- 
sentation used in SEDAR. The various components of the system (initially described 
in Chapter 6) are discussed in greater detail in this chapter. The lone exception is 
the DTM, which was described in detail in Chapter 6. 

The approach used in SEDAR is to use a variety of representational methods. In 
low-slope roofing literature, much information about the domain is hierarchically 
organized, thus frame hierarchies were used to represent this knowledge. The 
design codes found in the NRCA waterproofing manual were fundamentally 
condition-action rules, and lent themselves naturally to the rule representation 
described later in this chapter. Besides representational and inferential efficiency, 
another motivation for using a varied representation is user understandability. 
User understandability is important because critiquing systems should not be "black 
boxes," inscrutable to the user. Users will have more confidence in their acceptance 
or rejection of the system's advice if they can better understand the knowledge and 
process used to generate the advice. 

Design Representation 

This section describes the design representation used in SEDAR in greater detail. 
Also, specific simplifying assumptions about the roof domain are made in the design 
representation and are clarified in this section. The representation of the design 
consists of a set of instances of design objects and a set of instances of semantic links 
between the design objects. Design objects represent physical components of the 
roof, such as the deck, a vapor retarder, and an air-conditioning unit. Users may 
place design objects on the roof, delete them, move them around, or resize them. 
The roofing design is completed when all the necessary design objects have been 
selected and laid out on the roof. Semantic links represent relations between design 
objects. For example, an air-conditioning unit may be supported-by a wooden curb, 
or a walkway may be adjacent-to a fume hood. SEDAR automatically adds semantic 
links to its design representation on an object-by-object basis. 
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Design Objects 

The generalized form of each design object is kept as a frame in working memory. 
Each type of design object has its own frame representation. The design object 
frames are organized in a part-of hierarchy (Figure 27*). The root of the tree is the 
abstract physical-system-components object. All the nonleaf nodes of the hierarchy 
are used as shell classes and thus are noninstantiable (e.g., roof-system-components, 
drainage-components). The leaves of the hierarchy are the instantiable design ob- 
jects (e.g., roof-drains, ac-units-curbed, and attic vents). Each design object inherits 
from its parent in the design object hierarchy, from a set of material frames, and 
from a shape frame. The latter two types of frames will be discussed later in this 

chapter. 

The design object frames have slots that describe and structure the attributes asso- 
ciated with the type of design object represented by the frame. When the user 
selects and places a design object on the drawing, an instance of the generalized 
design object is made and its slot values filled. Figure 28 is an example of an 

instantiated design object. 

Geometric Representation and Reasoning. Every design object has a set of slots 
describing the intrinsic shape of the object. SEDAR supports two types of shapes: 
circles and rectangular-compositions. In Figure 28, the shape-type, coordinate-info, 
horizontal-borders, vertical-borders, and extent slots are used to represent the 
object's geometric information. SEDAR uses a two-dimensional representation for 
the low-slope roof layout problem. Both the roof and the objects on the roof are seen 
from a "top-down-view," as is shown in Figure 29. 

Every design object has one of two possible intrinsic shapes: circle or rectangular 
composition. The circle is specified by a center point and a radius. The rectangular 
composition is any combination of adjacent rectangles. Figure 30 shows examples 
of both circle and rectangular composition shapes. The simplification of object shape 
representation to the two distinct types described above is appropriate for two 
reasons. First, the simplification significantly decreases the difficulty of modeling 
objects and creating geometric reasoning methods. Second, the simplification was 
based on a study of low-slope roof objects. It was determined that the two shapes 
were sufficient to represent a large range of possible roof objects. One limitation of 
SEDAR's geometric representation is that objects must be arranged along rectilinear 
lines (parallel to the x- and y- axes). This restriction was decided on after an exami- 
nation of roof designs showed that nonrectilinear arrangements are rare in the 

Figures appear at the end of the chapter. 
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roofing domain. However, as the system expands into domains other than low-slope 
roofing, the need to represent nonrectilinear arrangements will clearly become 
necessary. 

Besides limiting the computation of geometric relations to an as-needed basis and 
storing the results of computations for reuse, researchers tried to make the LISP- 
based geometric reasoning methods more efficient by using a two-layered reasoning 
process. The first layer is meant to filter out "easy" rejection cases and to eliminate 
them from further (potentially expensive) computations. The technique that was 
used was to create extents, which are minimum bounding rectangles around object 
shapes. Figure 31 shows a set of rectangular-composition shapes and their extents. 

To illustrate the use of extents, Figure 32 depicts the action of the complete-overlap 
LISP function on two different scenarios. The first scenario has two rectangular 
compositions, RC-1 and RC-2. Figure 32a shows RC-1 completely overlapping RC-2. 
The initial check of the extents shows that the extent of RC-1 overlaps the extent of 
RC-2 completely. Thus a more involved check using the rest of the geometric 
information stored in the rectangular-composition objects is performed. In Figure 
32c, however, RC-2 is now not completely overlapped by RC-1, so the initial check 
of the extents fails because part of RC-2's extent is outside RC-l's extent. So the 
relation fails immediately, and no further checking is required. The second scenario 
involves a rectangular composition, RC-3, and a circle, Cl. In Figure 32b, Cl's 
extent is completely overlapped by RC-3's extent, thus leading to the more expensive 
check. The interesting case is that illustrated by Figure 32d. Here, Cl's extent is 
fully within RC-3's extent, but RC-3 clearly does not completely overlap Cl. 
Although the initial test on extents is successful, it is the more expensive check on 
the rest of the geometric information that causes the relation to fail. 

Improving the efficiency of the reasoning routines themselves was essential because 
of the nature of design checking performed by SEDAR. First, design checks are 
meant to be exhaustive with respect to each active task. For example, when a new 
design object is added to the design, all possible, relevant interactions are investi- 
gated. When a new air-conditioning unit is added to the design, the complete- 
overlap relation is checked against all the drains, sumps, fume hoods, other air- 
conditioners, etc. on the design. Since most of the objects will not satisfy the com- 
plete-overlap relation, filtering by reasoning about extents is both a justifiable and 
efficient means of reducing computational complexity. 

Other Design Object Slots. A class of design objects may also have its own special 
slots. For example, when dealing with plywood roofing decks, a grade of wood must 
be specified, or when working with steel roofing decks, both the gauge of the steel 
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and the flute width must be specified. The air-conditioning object in Figure 28 has 
one special slot, orientation, that can take one of four values: N, S, E, or W. This 
slot specifies the compass direction that the air-conditioning unit faces. 

The designer may change some of the slot values of a design object directly. In 
SEDAR, the set of slots that the designer may directly alter is contained in the 
user-modifiable-slots. For the air-conditioning unit, the only user-modifiable slot is 
the orientation slot. The designer may also alter the values of slots indirectly. For 
example, the geometric information slots described in the previous section are 
updated by SEDAR whenever the designer moves or resizes the design object. This 
removes the burden on the designer of entering coordinate values by hand and of 
ensuring consistency between the geometric information slots. 

The special activate-when-created-ruleset and activate-when-created-functions slots 
are used when an object is created. The activate-when-created-ruleset slot contains 
the name of a set of forward-chaining rules that are fired when the object is created. 
The activate-when-created-functions slot lists LISP functions to call when the object 
is created. Both the rules in the ruleset and the LISP functions make assertions (or 
semantic links), in the design representation that express a relationship between 
the newly created object and the other objects on the design. When a designer 
deletes an object from the drawing, the corresponding design object instance is 
deleted, as are any semantic links that relate to the design object. Additional 
functionality is available by using the activate-when-deleted-ruleset slot to designate 
rules to fire upon the deletion of the design object. An example where this ruleset 
is useful is when drains are deleted. The NRCA specifications call for a minimum 
number of drains for different roof sizes. A count of the drains on the roof can be 
maintained by using rules fired when a drain object is created or deleted. 

Semantic Links 

Designs in SEDAR are also specified by semantic links amongst the design objects. 
Semantic links represent inferred relationships between objects. Such relationships 
are mostly topological in nature, although some higher level semantic links may 
capture some functional relationships. A hierarchy is implicit among the semantic 
links. "High-level" semantic links use "low-level" semantic links in their definitions, 
while "low-level" semantic links are directly implemented in LISP. 

An example of a "low-level" semantic link is complete-overlap, which was shown in 
Figure 32. Complete-overlap is a binary relation; object-1 is related to object-2 with 
the complete-overlap relation if the area of object-2 is completely within object-1. An 
example of a "high-level" semantic link is the supported-by relation. Heavy pieces 



USACERL TM 96/99  77 

of roof-mounted equipment must be supported by wooden curbs built into the struc- 
ture of the roof. High-level semantic links are compositions of low-level semantic 
links. For example, the supported-by relation checks to make sure that the sup- 
ported object is spatially arranged correctly on its curbing—done via verifying a 
series of "lower-level" semantic links. 

Like design objects, instances of semantic links are created in the design representa- 
tion to describe the relationship between objects. Unlike design objects, the user has 
no direct control over semantic link instantiation. Semantic link instances are 
created in two ways. The first way is to be created when the object is created via the 
ruleset named in the activate-when-created-ruleset slot of the object. The second way 
is to be created when design rules are fired. Many design rules depend on the 
existence (or absence) of a type of semantic link between two or more objects. When 
a link is checked for in the ^/-portion of a design rule, if the link is unknown, it is 
created and saved for future reference. The primary motivation for this approach 
was computational efficiency. Each semantic link frame is associated with a LISP 
function that checks the appropriate relationship between two (or more) objects. For 
example, the euclidean distance semantic link frame is associated with a LISP 
function that computes the minimum euclidean distance between two design objects. 
For even simple, low-level semantic links, the LISP functions may be computa- 
tionally expensive. In our initial design rule checking strategy, every time the pre- 
conditions of a design rule were checked the LISP function was called. This 
approach proved unsatisfactory, as an unacceptably large amount of time was spent 
recomputing relationships. Our second approach was based on two principles: 

1. Compute relationships only on an as-needed basis. 
2. Reuse the results of previous computations as much as possible. 

Requirements Hierarchy 

The Requirements Hierarchy shown in Figure 33 is modeled after the requirements 
established by East et al. [1995] and discussed in Chapters 5 and 6. The functional 
requirements represent the goals that a roof design must satisfy. Each individual 
requirement is associated with a set of design codes that address problems with 
respect to the requirement. Therefore, every design code implemented in SEDAR 
is associated with both a requirement and a set of design tasks in the DTM. Al- 
though the current implementation of SEDAR has no provision for performing 
reviews using the Requirements Hierarchy (only using the DTM), the ability to do 
so will be added shortly. While designers may find the DTM natural, reviewers are 
more likely to find the Requirements Hierarchy more natural from their perspective. 
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Eventually, a user should be able to conduct reviews (using the design review 
critiquing strategy) based on either the DTM or the Requirements Hierarchy. The 
designer's perspective is defined by roof subsystem design tasks (e.g., drainage 
system layout or flashing design); the reviewer's perspective is defined by roof 
functions (e.g., waterproofing). Thus alternative hierarchies are necessary to 

accommodate the two types of users. 

Materials Hierarchy 

In roofing design, analysis of the combination of materials used for roof objects is 
essential; certain combinations of materials may lead to disastrous results. One 
example of this is using any type of bitumen adhesive on a single-ply EPDM roof. 
Bitumen tends to degenerate the ethylene/propylene diene monomer, resulting in 

a significantly weakened roof membrane. 

Constituents of the materials hierarchy of SEDAR (Figure 34) are used as parents 
of certain design objects. For example, a deck may be steel, wood, or a variety of 
types of concrete. Each specific type of deck has as its parents the general design 
object decks and the corresponding material (see Figure 35). Currently SEDAR has 
few codes in its knowledge base dealing with roof materials and their interactions. 
Future work for SEDAR will include the development of a materials DCCA to 

evaluate the roof material system. 

Design Codes 

The design codes implemented in SEDAR come from a variety of sources. The 
primary source for the codes was the NRCA Roofing and Waterproofing Manual for 
Low-Slope Roofing [1985]. These types of rules are specification-level. Also, many 
"common sense" or physical-level rules, are used mostly to check for physical 
impossibilities, like intersecting two air-conditioning units (Figure 36) or placing 
design objects like roof drains outside the roof footprint entirely (Figure 37). The 
final type of rule is preference-level, used to express individual designer's design 
preferences. One roof designer favors having a small overflow drain close to each 
roof drain in the roof field to handle excess ponding. While not required by the 
NRCA specifications, this was a strong preference that the roof designer wanted to 
pass on to other roof designers. Constraint violations resulting from physical-level, 
specification-level, and preference-level rules are known as physical, specification, 

and preference violations, respectively. 
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Each design code has three parts: a trigger portion, a condition portion, and a rule 
information portion. The condition-action nature of each design code is captured in 
the trigger and condition portions, which are themselves expressed in a condi- 
tion-action form. The trigger portion of the design code is used to check the design 
for the basic applicability of the design code. This involves checking the design for 
the correct types of design objects and whether the particular set of design objects 
had ever been checked before. If the basic applicability conditions are satisfied, the 
condition portion of the rule is invoked. This portion usually involves the calcula- 
tion of a relationship between the two objects and is generally more expensive to 
apply than the design code trigger. If the condition portion is satisfied, a note is 
made of the violation, and a critique is generated. Figure 38 is an example of a 
design code and its trigger and condition portions. 

Both the trigger and condition portions are expressed as if-then rules. The anteced- 
ent of the trigger portion is a conjunction of conditions. The first two conditions 
establish the type of objects (i.e., any type of equipment and a hatch) and bind 
instantiated design objects to the variables (?e1 and ?e2). The third condition, 
(not-equal ?e1 ?e2), ensures that ?e1 and ?e2 are not the same object. The last 
condition of the trigger checks to see if the rule (Rule 21) has been checked 
previously and found not to be in violation. If it has, then there is no reason to 
continue with the current rule check. The record of previously checked rules is 
updated when design objects are moved, resized, or deleted. If a design object has 
been modified, then the previous rule checks are no longer valid. 

The consequent of the trigger portion asserts a message for the condition portion of 
the design code. In particular, it establishes an identification tag for the rule check 
and the variable bindings for the check. 

The antecedent of the condition portion performs the actual violation check between 
the objects. In the example, this check is performed in the line (equal (connected? 
?e1 ?e2) '())• The connected? relation is implemented as a LISP function, which 
checks to see if the two design objects are accessible via a sequence of walkways. If 
the relation fails, the equipment object is not accessible via the hatch and a violation 
message is created, to be processed in the Generate Critiques phase of the iterative 
critiquing cycle. 

The reason for splitting the trigger and condition portions is discussed in detail in 
the next chapter. Figure 39 shows the rule frame portion corresponding to the 
sample design code. This portion contains the variable-object type association list, 
the rule level, the rule type, and critique generation information. 
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Whether a rule is physical-level, specification-level, or preference-level determines 
its precedence when multiple problems with an object are discovered. In general, 
physical-level rule violations are more serious than specification-level rule viola- 
tions, which in turn are more serious than preference-level rule violations. So if a 
particular object like the drain in Figure 37 is found to violate multiple rules, only 
the violations associated with the highest priority levels are reported to the user. 
In Figure 37, since the drain is completely off the roof, it is not necessary to mention 
that it is not at one of the points of highest deflection in the roof field (a specifica- 
tion-level rule violation) and that it does not have an overflow drain next to it (a 
preference-level rule violation). 

Aside from being physical-level, specification-level, or preference-level, each rule 
may either be an object-relation rule or an object-existence rule. Object-relation 
rules detect problems between existing objects on the design; object-existence rules 
make suggestions for adding (or removing) objects to or from the design. The 
example in the next section will highlight the differences between these types of 

rules. 

The critique generation information from the text, bindable-list, explanation, and 
violation-action slots is used to create the graphical/textual critiques described in 
the next chapter. The graphical component of the critique is generated from the 
contents of the violation-action slot, and the textual component of the critique is 
generated from the contents of the explanation slot. 
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Instance: AC-UNITS-CURBED-1 
Parent: AC-UNITS-CURBED 
Slots: 

Shape-Type RECTANGULAR-COMPOSITION 

Coordinate-Info ((42.0989 81.783) (45.0989 81.783) (45.0989 78.783) (42.0989 78.783)) 

Horizontal-Borders ((42.0989 (78.783 81.783)) (45.0989 (78.783 81.783))) 

Vertical-Borders ((78.783 (42.0989 45.0989)) (81.783 (42.0989 45.0989))) 

Extent ((42.0989 78.783) (45.0989 81.783)) 

Orientation N 

User-Modifiable-Slots (ORIENTATION) 

Object-Type REAL 

Activate-When-Created-Ruleset EQUIPMENT-RULES 

Activate-When-Creatsd-Func'tion; NIL 

Acti vate-Wh e n- D e I ete d- R u I e s et NIL 

Figure 28. An AC-UNITS-CURBED instance. 

Figure 29. The "Top-Down" view of the roof. 
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Circle 
Rectangular- 
Composition 

Figure 30. The circle and rectangular-composition shapes. 

Figure 31. Extents of rectangular-compositions. 
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Examples of 
Complete-Overlap 

RC-2 RC-1 

RC-3 
(C1 ' 

Examples of NOT 
Complete-Overlap 

RC-2 

RC-1 

€. 
RC-3 

Figure 32. The complete-overlap relation. 

Load-Support! 

Uplifting-Force-Resistance 

Weather-Damage-Resistance  | 

mJf Roof-System-Movement] 

—^ Impact-Crushing-Resistance | 

—j Dimensional-Stability| 

Off-Collection-Transmission —[ Run- 

| Moisture-Damage-Resistance   | 

—| Moisture-Migration-Resistance 

-f Roof-Component-Security | 

Figure 33. The Requirements Hierarchy. 
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Materials 

i Membrane-Materia 

Decking-Material 

—4 Flashing-Materiall 

(Structural-Material 

I Insulation-Material 

—| Vapor-Retarder-Material 

■—fBuilt-Up^ 

—| Single-Ply | 

Modified-Bitumen 

K Steel 

i Concrete U 

H Wood . 

Plastic aPlasti 

Le7d~l 

Cellular-Glass-Board 

i Composite-Board 

Glass-Fiber-Board 

Perlite-Board 

| P o ly iso cy a n u rate- F o a m- B o a ret 

t Polyurethane-Foam-Boardl 

Bituminous 

Laminated-Kraft-Paper 

—[ Vinyl-Film"] 

-J Asp ha It-Saturate d-Organic-Feltl 

| C o a I- T a r- S atu rate d- 0 rg a n i c- F e Itl 

—4 Asp halt-Impregnated-Glass-Fib er-Felt I 

PVC | 

Cement-Wood-Fiber 

-4 LT W-1 nsu I ati n g- C o n crete I 

■ Poured-Gypsum-Concrete 

Pre cast-Concrete-Pan el 

i Prestressed-Concrete-Plank 

Hi einforced-Concrete 

Plywood 

Wood-Plank 

Figure 34. The Materials Hierarchy. 

Design Objects 
Hierarchy 

Decks 

Materials 
Hierarchy 

I Decking-Material 

Concrete 

\ Cement-Wood-Fiber 

-E 

—[ Ste 

Deck Object 
Types 

Cement-Wood-Fiber-Decks 

LTW-1 nsu I ati n g- C o n crete- 0 e cks 

Reinforced-Cortcrete-Decks 

1 Prestressed-Concrete-Plank-Decks 

j Poured-Gypsurn-Concrete-Decks 

P re c ast- Con crete- Panel-Decks 

P lywo o d- D e cks 

Wood-Plank-Decks 

Figure 35. Parents of deck objects. 
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Figure 36. Physical-level violation between air-conditioning units. 

Figure 37. Physical-level violation involving a roof drain. 
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Design Code 
Rule 21: Equipment on the roof should be 

accessible via walkways from a hatch. 

Trigger Portion 

(define-rule rule21 -trigger (priority 100) 
(instance ?e1 is equipment) 
(instance ?e2 is hatches) 
(not-equal ?e1 ?e2) 
(equal (checked-before-dual Yule21 (list '?e1' ?e1)(list"?e2 ?e2))'(» 

THEN 
(check-condition ?new-violation-name ? ;urrent-queryrule21 (C'?e1' ?e1)C'?e2" ?e2)))) 

Condition Portion 

(define-rule rule21-condition CpriorityO) 
(check-condition ?name?current-queryrule21 ((?t1 ?e1) (?t2 ?e2))) 
(equal (connected? ?e1 ?e2)'()) 

THEN 
(violation ?name?current-queryrule21 ((?t1 ?e1) (?t2 ?e2)))) 

Figure 38. The trigger and condition portions of a design code. 

Instance: RULE21 
Parent: DESIGN-CODES 
Slots: 

Name RULE21 

Level SPECIFICATION 

Rule-Type OBJECT-EXISTENCE 

Permanent T 

Text "All equipment should be accessible via walkways from the hatch." 

Trigger RULE21-TRIOOER 

Condition RULE21-CONDITION 

Object-Driven RULE21-INTERACT 

Bindable-List «?E1 EQUIPMENT) (?E2 EQUIPMENT)) 

Explanation ("There shouldbea walkway from" "?e1"" to" "?e2"".") 

Violation-Action (MULTIPLE-DRAW 
(DRAW-BOUNDARY-AREA "?e1" UNKNOWN INTERIOR 0) 
(DRAW-BOUNDARY-AREA"?e2" RECTANGULAR-COMPOSITION 

INTERIOR 0)) 

Figure 39. The rule frame. 
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8   Examples of System Operation 

This chapter gives a concrete example of how the ideas presented in this report have 
been implemented in SEDAR. Through a series of screen captures, the actions of a 
roof designer on a partially complete roof plan in the SEDAE environment are 
displayed and the system's responses explained. In particular, these examples 
illustrate how the critiquing strategies—error prevention, error correction, and 
design review—are related in the current implementation. While previous chapters 
described the system in a static fashion, this example demonstrates how the various 
system pieces work together to provide salient, coherent feedback to the system 

user. 

The example begins with the partially complete roof design shown in Figure 40.* In 
this flat roof, the column lines (criss-crossing the roof field) are shown as dotted 
lines. At each intersection of perpendicular column lines, a black square indicates 
a load-bearing column. The parapet wall surrounding the roof field is also load- 
bearing in this case. The cursor is composed of the solid-line crosshairs in the 
bottom right of the drawing. The roof is in the intermediate stage of design—the 
designer has already placed several objects in the roof field. On the left of the roof 
are two air-handling units. A power vent is placed at the upper center of the roof, 
and a chimney, exhaust fan, and HVAC unit are at the right of the roof. The last 
action taken by the designer was to place one of the air-handling units on the 
design. The initial activation pattern of the DTM is shown in Figure 41. The air- 
handling-layout task thus has a focus activation, and the tasks related to the 
air-handling-layout task by interferes-with relations are active. Formerly focus 
tasks are also active. This activation pattern is the same as the one shown in 

Figure 21. 

Action 1: Placing a Masonry Chimney on the Roof Design 

Before moving on to address other roof subsystems, the designer wants to complete 
the layout of roof-mounted equipment and other major penetrations on the design. 
One of the requirements for the building is that two masonry chimneys be provided 

Figures appear at the end of the chapter. 
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in the same vicinity on the roof design. To achieve this, the designer clicks the right 
mouse button in the drawing area and selects the New Object... option from the 
action menu that appears (Figure 42). Besides adding new objects, the designer may 
also choose to modify an existing object, look at the Goals... or Critiques... windows, 
or to save or open a stored roof layout. The Goals... and Critiques... windows are 
described in detail later in this example. 

SEDAR then responds with the object palette shown in Figure 43. After using the 
scrollbar on the right of the object list to find a masonry chimney, the designer clicks 
on the OK button. The available objects are the set of instantiable (leaf) objects in 
the Design Object Hierarchy. The act of selecting an object from the object palette 
signals the end of the first stage of the iterative critiquing cycle. 

An Application of the Error Prevention Strategy 

During the second stage of the cycle, the CMA decides which critiquing strategy to 
use for the rest of the cycle. The decision to use the error prevention strategy is 
made when the CMA learns that the designer has selected an object. Since the 
designer has not yet placed the object on the design, the error prevention critic may 
be able to provide some useful information to the designer regarding where to place 
the new object. Also taking place during the second stage is the updating of both the 
DTM and the design representation. The activations of the tasks in the DTM are 
updated according to their prior state and the recent masonry chimney design object 
selection. The new activation pattern of the DTM is shown in Figure 44. The 
chimney-layout task now has a focus activation, and the activation of the air- 
handler-layout task has been demoted to active. 

In the design representation, a temporary, incompletely specified masonry chimney 
object is created. No semantic links are created. In the third stage of the iterative 
critiquing cycle, the set of design codes to be applied to the design is formed. The set 
of design codes is formed from the union of the individual sets of design codes asso- 
ciated with each focus and active task in the DTM. For the error prevention 
strategy, only the trigger portions are included in the rule set. The condition 
portions are not included because their antecedents require geometric information 
that is currently not known about the object. The trigger portions include only 
object type checking predicates in their antecedents—thus applying only the trigger 
portions will result in all possible interactions between the new object and the 
existing objects on the design. This is useful because the error prevention strategy 
seeks to show all the constrained areas on the existing design. 
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After determining which design codes to apply, SEDAR moves into the fourth stage 
of the cycle, and the set of design codes are fired on existing design. This process 
results in "violations," or more appropriately, constraint area notifications that 
specify off-limits areas for the new chimney. During the fifth stage of the cycle, 
these constraint areas are formed into a set of graphical and textual instructions for 
the user interface. Each constraint area has a set of bound variables. The graphical 
critique template is taken from the associated design-code's rule-frame and is 
instantiated with the set of bound variables for the constraint area. For the error 
prevention critic, the textual portion of the constraint area is not created. Also, 
since the location of the selected object is not set, only half of the graphical portion 
of the critique, that involving the object on the existing design causing the constraint 

area, is generated and displayed. 

The constraints are then ordered using the activation pattern of the DTM. For 
example, a constraint resulting from a design code associated with the chimney- 
layout task would be ordered before a constraint resulting from a design code 
associated with the air-handler-layout task, because the chimney-layout task has 
a focus activation and the air-handler-layout task is active. 

Figure 45 shows the results of the sixth stage of the iterative critiquing cycle. Since 
the error prevention strategy was applied, all of the constraint area notifications are 
displayed on the drawing. In the figure, these notifications are shown as hatched 
areas. Each of the existing pieces of mechanical equipment are shown encompassed 
in hatched regions, which are the result of design codes specifying minimum 
distances between objects. Hatching is also around the perimeter of the roof field. 
This hatching was created by design codes specifying a minimum distance between 
roof-mounted equipment and the roofs edges. The collection of all these constraint 
areas shows the designer where not to place the chimney on the roof. 

The display of the constraint areas concludes the sixth stage of the cycle, and again 
SEDAR waits for an action by the designer. 

An Application of the Error Correction Strategy 

The designer then places the new chimney on the design close to the existing 
chimney. Suppose that the new chimney is too close to the existing chimney, 
thereby violating one of the design codes in the knowledge base. Placing the object 
by moving the AutoCAD crosshairs to the desired location and clicking the left 
mouse button signals the end of the first stage of the critiquing cycle. The action of 
actually placing an object causes the CMA to activate the error correction strategy. 
The DTM is not updated in the second stage, because no changes in activations 
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would take place from the previous user action (that of selecting an object). The 

temporary object in the design representation is updated with the now available 

geometric information. Furthermore, the system now creates the appropriate 

semantic links between the other design objects and the new object. 

During the third stage, both the trigger and condition portions of the rules are 

included in the rule set. So the error correction strategy finds actual violations of 

design code, rather than the possible ones in the error prevention strategy. The 

fourth stage differs little from before—the rule set is applied to the existing design, 

which creates rule violations. In the fifth stage, both the textual and complete 

graphical portions of each violation are generated, ordered according to the DTM 

activation pattern, and returned to the user interface. 

The full critiques are generated because the user may browse through the critiques 

and examine their explanations. Instead of actively displaying the critiques on the 

design, the user interface notifies the user that violations have been found (Figure 

46), and a textual message shows in the dialog window of the interface. 

To view the critiques, the designer selects Critiques... from the action menu. This 

displays the critiques in the Violations window shown in Figure 47. The Violations 

window separates the rule violations into the three levels of design codes: physical, 

specification, and preference. In this case, two separate specification-level violations 

were found; one relating to RULE6 and another relating to RULE12. The text 

corresponding to the currently selected violation is displayed beneath the three 

boxes. The specification violation stemming from RULE6 is that the two masonry 

chimneys must be at least 1 ft apart. Clicking the View button causes the interface 

to show the graphical portion of the critique (Figure 48). 

The graphical critique for this violation consists of displaying two constraint areas 

around the chimneys, marking out boundary areas 1 ft outside the respective 

chimneys. The overlap of one chimney's constraint area and the other chimney 

expresses the constraint violation. Furthermore, a red outline box encompasses the 

two objects and their constraint areas. The intent of the box is to both attract the 

designer's attention and to focus his attention on the objects and constraint areas. 

Figure 49 is a closer view of the constraint violation displayed in Figure 48. 

The designer then decides to move the newly placed masonry chimney to avoid the 

specification violation. Selecting Move Object from the action menu allows the 

designer to click on the chimney and to place it further away from the original 

chimney. The error correction critic checks the drawing again for violations, and 
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this time RULE6 does not cause a violation. Figure 50 shows the designer's new 

location for the chimney. 

An Application of the Design Review Strategy 

After correctly placing the chimney on the roof design, the designer believes that the 
functional requirements for mechanical equipment on the building have been 
satisfied. To test this hypothesis, the designer selects Goals... from the action menu, 
which allows him to select one of the tasks of the DTM. In this case, the designer 
elects to review the roof-mounted equipment subsystem and chooses the equip- 

ment-layout task (Figure 51). 

Despite the differences in the first stage of the critiquing cycle, stages two through 
six of the design review strategy are very similar to those of the error correction 
strategy. A rule set is formed with the trigger and condition portions of the design 
codes affiliated with the selected review goal. The rule set is fired on the existing 
design. The resulting rule violations are collected, processed to form the textual and 
graphical contents of the critiques, and returned to the user interface. The interface 
notifies the designer about the rule violations, and the designer may view the 
critiques by selecting Critiques... from the action menu. 

The review on equipment-layout yields a critique, which the designer views in the 
Violation window (Figure 52). Figure 53 shows the graphical form of the critique. 
In this case the critique is actually a simple design suggestion for a hatch to be 
placed somewhere on the roof. The hatch provides easy access to the roof and is 
necessary for maintenance of the roof-mounted equipment. The critique illustrates 
this by drawing a hatch object in the suggestion window in the upper left of the 
interface window. An arrow points from the hatch to the highlighted outline of the 
roof, and the textual portion of the critique again is shown in the dialog window. 

Action 2: Placing a Hatch on the Roof Design 

To satisfy this latest critique, the designer now selects a hatch to place on the roof 
(Figure 54). The object selection causes the CMA to use the error prevention 
strategy. Results are shown in Figure 55. The revised activation pattern of the 
DTM is shown in Figure 56. The hatch-layout task is now focus and the chimney- 
layout task has been demoted to active status. The results of the error prevention 
strategy are very similar to the results for the chimney selection, except that the 
newly placed chimney also has an appropriate constraint area. 
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When the designer places the hatch object at the desired location, the error correc- 
tion strategy generates the critiques shown in Figure 57. All the resulting 
suggestions involve connecting the hatch with the other roof-mounted equipment. 

Action 3: Laying Out Walkways on the Roof Design 

To satisfy the above suggestions, the designer selects the walkway design object 
from the object palette. The DTM is updated to reflect the new user action and is 
used in the same fashion as described for the prior two design actions. Walkways 
are laid out in a rectilinear fashion. After selecting the start point of the walkway, 
the designer is allowed to extend the walkway along the x- or y-axis (whichever is 
perpendicular to the last segment of walkway drawn). Figure 58 shows a possible 
walkway layout for the roof in the example. 

Action 4: Deleting the Fan From the Roof Design 

A functional requirement for the building is changed, which eliminates the need for 
the exhaust fan near the masonry chimneys. Fortunately, its impact on the roof 
design is minimal; only the exhaust fan object must be removed from the roof plan. 
The designer removes the object by selecting Delete Object from the action menu and 
clicking on the exhaust fan. This action results in the roof plan shown in Figure 59. 

When an existing object is deleted from the design, the system removes not only the 
object from the design representation but also all semantic links and other cached 
information involving the deleted object. 

Action 5: Drainage System Layout 

Since the roof in the example is a flat roof, the sloping of the roof to transmit and 
drain water is solely the responsibility of the roof designer. On a low-slope roof, the 
heights of the column lines themselves play a significant role in determining the 
layout of the drainage system. As discussed in Chapter 5, the primary philosophy 
of roof designers is to place their drains (if using an interior drainage system, as is 
the case with this example) at points of maximum deflection in the roof field. For 
example, roof drains should never be placed near load-bearing columns on flat roofs 
because after settling the roof tends to be higher near the columns. Figure 60 shows 
a possible drainage system layout that tries to fulfill these requirements.   The 
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drains are halfway between load-bearing members, and all areas of the roof are 
sloped. The arrows point in the direction of greater deflection. 

Figure 61 shows the activation pattern of the DTM after the user has selected a 
four-slope drainage area (an inverted pyramidal drainage slope). The drainage- 
area-layout task is now focus, and all the subtasks of equipment-layout are active. 

The designer performs a review on the drainage system by selecting the drain- 
age-system-layout goal from the Goals window and clicking on the Review button. 
The review yields some critiques that suggest placing two-slope drainage areas 
(crickets) on the upslope side of the roof-mounted equipment. Without crickets to 
direct the flow of water around the equipment, water will accumulate (and form 
pools) on the upslope side of rectangularly-shaped equipment. 

Chapter Summary 

This chapter presented how a roof designer might use SEDAR to support the design 
process in a flexible way. First, SEDAR tries to prevent errors from occurring by 
graphically marking off-limits areas on the design for a selected design object. 
Second, SEDAR notifies the designer as soon as an error is detected. This notifica- 
tion lessens the possibility of extensive redesign if the error were to be discovered 
later in the design process. Finally, SEDAR allows designers to integrate reviews 
based on building subsystems (goals in the DTM) seamlessly with the design 
process. Unlike the current system of design and review, in which reviews may take 
months, the design review critiquing strategy allows the designer immediate 
feedback as to whether their design satisfies the basic requirements described by 

published design specifications. 
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Figure 40. Initial roof plan. 
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Figure 41. Initial activation pattern of the Designer's Task Model. 
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New Object... 
Move Object 

Resize Object 
Delete Object 
Change Slot Values 

V Error Prevention 

V Error Correction 

Goals... 
Critiques... 

Save Roof Layout... 

Open Roof Layout... 

New Object 
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OK Cancel 

Figure 42. The Action Menu. Figure 43. Selection of a masonry chimney. 
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Figure 44. Activation pattern of the DTM after masonry chimney selection. 
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Figure 45. Results of the error prevention critic. 
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Figure 46. Results of the error correction critic. 
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Violations 

Physical Violations: 

Specification Violations: 

RULE6 
RULE12 

Preference Violations: 

MASONRY-CHIMS-1 must be at least 1 foot away from 
MASONRY-CHIMS-2. 

illll        ■View I Cancel: 

Figure 47. The Violations window. 
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Figure 48. The graphical portion of the RULE6 critique. 
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Figure 49. Enlarged view of the graphical portion of the RULE6 critique. 

AutoCAD - UNNAMED 
File    Edit    View    Assist    Draw    Construct    Modify    Settings    Render    Model    CADRE 
Help 

♦iioisipr DRAWING 65.7869,12.6702 **MKM*- 

 - @l.  m   j   *■■•■ 

-S  1 ■ ■   m   <&fa..o  

 - ■ - 

 — ¥  

 ■  

 *  

 ■  

 ¥ -- 

 ä " 

— •-- 

1 - *   ■   EH'f  

1         II 

-- •  

 @t  

 •  

•• —■■■  

 ¥  

 ■ — 

 • ■••• 

- ■  - 

Command: (new-object) 
^lease place the new object.nil 
Command: 
Figure 50. Designer's revised chimney location. 
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Activation   State    Name (hierarchy] 

On DECK-LAYOUT 
:* 

On VAPOR RETARDER-LAYOUT 
On INSULATION-LAYOUT 
On MEMBRANE-LAYOUT 
On PENETRATION-LAYOUT 
On VENTILATION-SHAFT-LAYOUT 
On HATCH-LAYOUT 
On DRAINAGE-SYSTEM-LAYOUT 
On DRAIN-LAYOUT 
On DRAINAGE-AREA-LAYOUT 
On SUMP-LAYOUT 
On SCUPPER-LAYOUT 
On FLASHING-SYSTEM-DESIGN 
On EDGE-FLASHING-DESIGN 
On EQUIPMENT-FLASHING-DESIGN 
On ROOF-COMPONENT-FLASHING-DESIG 

On EQUIPMENT-LAYOUT 
On AIR-HANDLER-LAYOUT 
On WALKWAY-LAYOUT y 
On CHIMNEY-LAYOUT 3 

Review \ Cancel 

Figure 51. Selecting a goal to review. 

Violations 

Physical Violations: 

Specification Violations: 

Preference Violations: 

ROOF-FOOTPRINTS-1 must have a hatch to allow access. 

Viewj Cancel | 

Figure 52. A Violation resulting from the review. 
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Figure 53. The graphical portion of the violation. 
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Figure 54. Selecting a hatch object. 
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Figure 55. Results of the error prevention strategy. 
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Figure 56. Activation pattern of the DTM after roof hatch selection. 
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Violations 

Physical Violations: 

Specification Violations: 

Preference Violations: 

There should be a walkway from AC-UNITS-CURBED-1 to 
HATCHES-2. 

Done I View! Cancel 

Figure 57. Results of the error correction strategy. 
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Figure 58. A possible walkway layout. 
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Figure 59. Revised roof layout after deleting exhaust fan. 
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Figure 60. The drainage system layout. 
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Figure 61. Activation pattern of the DTM after drainage area selection. 
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9  System Evaluation and Testing 

After 11/2 years of development, a research prototype of SEDAR was available for 
early evaluation and testing. The need for early evaluation is especially important 
in interactive systems such as SEDAR, despite the associated difficulties of testing 
incomplete prototypes. The benefits of prototype evaluation include: 

• Discovering which system features assist the target user community and what 
changes are necessary to make them more effective 

• Exposing problem areas in the system design or implementation to be resolved 
in the next version of the system 

• Canvassing of the user community to learn what system capabilities should be 
developed in the future. 

The difficulties associated with prototype evaluation are: 

• Deciding when to test the prototype—if the evaluation is conducted too early 
during development, bugs may distract the focus of the evaluation from the 
important system features 

• Spending valuable resources on evaluation that would otherwise be spent on 
system development 

• Making ad hoc system design decisions due to time pressures that may later 
create problems. 

Thus a system developer performing a prototype evaluation must consider the goals, 
scope, and content of the evaluation carefully. Realistic goals must be set given 
available resources and the extent of system implementation. The scope of 
prototype evaluations is best limited to a small group consisting of members of the 
targeted user community. This limitation allows the developer to have a deeper, 
more focused discussion on the evaluation issues. 

The first section of this chapter describes the initial evaluation and testing goals for 
the SEDAR prototype. Experiments to evaluate system usability and the error 
reduction effectiveness of the prototype are described in the second section. Finally, 
the results of the two experiments are presented. 



USACERL TM 96/99  107 

Evaluation and Testing Goals 

Expert critiquing systems such as SEDAR may be evaluated along many dimen- 
sions, including system usability, error reduction effectiveness, decrease in problem- 
solving time, range of problems covered, solution feasibility (if the critiquing system 
has solution generation capabilities), and solution quality. 

For the SEDAR evaluation, system usability and error reduction effectiveness were 
chosen as the primary goals. System usability was chosen because it is a major fac- 
tor determining whether the target user community (here intermediate- to proficient 
practitioner-level roof designers) will be willing to use the system in their practices. 
Error reduction effectiveness was selected because it is the fundamental goal of 
SEDAR. An early assessment of how well SEDAR performs with respect to these 
two goals will lead to a better understanding of both the immediate needs of the 
system and future research directions. 

The general issue of system usability was divided into two smaller issues: critiquing 
strategy usability and interface usability. Critiquing strategy usability refers to how 
system users perceived usefulness of the critiques provided by the system. This 
strategy includes questions about whether the system offers the right type and form 
of critiquing information for the user's level of expertise, whether the critiquing 
strategies offer the information in an understandable form, and whether the strate- 
gies are helping or hindering the user in the context of the user's problem-solving 

style. 

Interface usability involves a number of issues concerning the user interface. The 
primary issue was the ease of use of the interface and its appropriateness for roof 
designers. Due to limitations imposed by the underlying development platform 
(AutoCAD), there was some concern during early stages of the project about how 
well the general scheme of user and system interaction supported the needs of the 
user. For example, the set of operations that could be programmed into the system 
that allow the user to manipulate the roof design was severely restricted due to 
limitations in the interface capabilities of AutoCAD. Another issue that was a 
concern during development was the amount of time that the incremental critiquing 
strategies spent for inferencing and that the user spent waiting for the system to 

finish its computations. 

The second major issue tested was to rate the current system's error reduction 
effectiveness. Although the system was still a research prototype, with known bugs 
in the knowledge base, a preliminary test of this issue would show the areas needed 
for improvement in this area. Another issue that was a concern was the usefulness 
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of the type of assistance provided by the program to proficient roof designers. As 
mentioned earlier, the design code specifications reflect the minimum standard of 
quality for roof design. These specifications say very little about correct but sub- 
optimal designs. Thus the current system is unable to evaluate and to critique the 

optimality of these types of designs. 

The two issues above are the most relevant to the current stage of system devel- 
opment. Both issues address the basic method of interaction between system and 
user, which should be validated before further development takes place. Possible 
future issues to be considered are to decrease in problem-solving time and the range 
of problems covered by the system. Determining the cost benefits of using SEDAR 
requires an experiment comparing the time spent in the design/review process 
between a group using the critiquing system and a group without the critiquing 
system. Testing in this environment requires the system to be beyond the research 

prototype stage. 

Another dimension for evaluation is the range of problems the system can critique. 
For example, the current system cannot represent nonrectilinear roof designs. 
Developing a representation (and geometric reasoning routines) for arbitrary 
two-dimensional shapes would improve the range of problems that the system can 
critique, but evaluation of this issue is not appropriate for the research prototype. 

Experiment Descriptions 

This section describes the methods used to test system usability and the system's 
error reduction effectiveness. The system evaluators ranged from novice- to profi- 
cient practitioner-level roof designers. First, a profile of the system evaluators is 
presented that will help explain the results of the experiments and play a major part 
in the discussion in the next chapter. Following the profile are the descriptions of 
the experiments. For each experiment the materials presented to the evaluator and 
the experimental procedure are described. Testing system usability involves a great 
deal of measuring and noting users' responses to different aspects of the system— 
the usability experiment involved both protocol analysis and evaluation forms. The 
error reduction issue was more difficult to test because of the small number of 
properly qualified roof designers available locally. Testing on this issue involved 
giving the evaluator two distinct roof design situations of roughly equal difficulty, 
and having the evaluator perform a roof design on one without the aid of the critiqu- 
ing strategies and on the other with the critiquing strategies "on." Two values were 
tabulated for the noncritiqued design—the number of different classes of errors and 
the total number of errors in the design. Each design code in the knowledge base 



USACERL TM 96/99  12£ 

was considered a separate class of error. For the critiqued design, the incremental 
critics (error prevention, error correction) were activated and the user was also 
allowed to use the design review critic. During the experiment, the number of errors 

prevented or corrected by SEDAR were recorded. 

In the interest of making the evaluations as concise as possible, the two experiments 
were run partially simultaneously. The designers were asked to make comments 
about the usability of the system throughout their work on the two roof designs. 
After the roof designs were completed, or terminated due to time constraints, a short 
debriefing question and answer session was conducted and the evaluators were 
asked to fill out the evaluation forms. 

The System Evaluators 

The system evaluators were professional architects with experience in roof design 
and review and were employees of the U.S. Army Corps of Engineers. Some archi- 
tects in this group had less than 1 year of roof design expertise, and some had a 
number of years of practice. The wide range of expertise was chosen to determine 
whether the level and type of assistance provided by the program was appropriate 
for the targeted practitioner- and proficient-practitioner-level roof designer. Of the 
six people participating, two had the appropriate level of expertise (practitioner and 
proficient practioner), two had architectural backgrounds but were not practicing 
roof designers (intermediate level), and two had little or no roofing experience 
(novice level). The roof designs of the intermediate- and novice-level evaluators 
were not used in the error reduction experiment. 

The System Usability Experiment 

Three techniques were used to assess the system's usability. First, the evaluators 
were asked to comment on the system as they worked on the two roof designs. They 
were also prompted at times to explain their reasons for performing certain actions. 
Second, after the designs were completed, a short verbal question and answer ses- 
sion was conducted. During this session, they were encouraged to expand on their 
earlier comments. Finally, they were asked to fill out an evaluation form. The 
evaluation consisted of roughly 30 specific questions about system usability and 
their background in roof design. Fill-in-the-blank, short answer, and numerical 
ratings were used. The evaluation form was divided into five sections: 

1. Background—The evaluators were asked to assess their expertise in roof 
design and describe their architectural background and experience in using 
computer-based design programs (i.e., CAD programs). 
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2. System Usability: The User Interface—The evaluators were asked to rate and 
to make comments about the usability of the interface. This section included 
the ease of use and cuing issues discussed earlier. A series of questions about 
the clarity and expressiveness of the critique display strategy was also 
included in this section. 

3. System Usability: The Error Prevention Critic—The evaluators were asked to 
rate and make comments about the usefulness of the error prevention critic. 
In particular they were asked to evaluate the usefulness of the information 
provided by the critic and whether it had helped or was detrimental to their 

problem-solving process. 

4. System Usability: The Error Correction Critic—This section contained ques- 
tions very similar to the section on the error prevention critic. 

5. Overall—The evaluators were asked whether they felt the critiquing model fit 
the goals of the system: supporting the design/review process. They were also 
asked if they would personally use the system if it were developed further. 

The Error Reduction Experiment 

For this experiment, two roof design tasks were given to the evaluator, who worked 
on the first roof design in the SEDAR environment without any critiquing support 
and on the second roof design with all of the critiquing strategies activated. Which 
roof design task was given first to the evaluator was random. The number of errors 
made by the evaluators on each of the designs, with and without the critiquing 
strategies activated, were tabulated. 

Figure 62 shows the first roof design, which is divided into two architectural zones. 
The second roof design, which is shown in Figure 63, has three architectural zones. 
For each of the tasks, the roof designer was asked to complete the design, adding 
whatever roof-mounted equipment, drainage slopes, etc. necessary. 

Results 

The results of the experiments proved to be highly instructive, exposing the 
strengths and weaknesses of the current implementation. The first part of this 
section describes the outcome of the system usability experiment, combining results 
from the evaluation forms, protocol analysis, and the verbal question and answer 
session.   Due to time and resource limitations, the original scope of the error 
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Figure 62. Roof Design Task 1. 
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Figure 63. Roof Design Task 2. 

reduction experiment was limited to two datapoints (the two experienced roof 

designers). 

The System Usability Experiment 

As expected, a great deal of information was available regarding system usability. 
The roof designers, not surprisingly, had the most to say about how well the system 
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supported the design/review cycle. The novice- and intermediate-level roof designers 
provided feedback on the interface's usability and the effectiveness of the incremen- 

tal critiquing strategies. 

Interface usability. Figure 64 shows the average values of evaluator responses to 
evaluation form numerical rating questions pertaining to interface usability. For 

each of the questions, the average value is circled. 

The overall usability ranking of the interface (Question 1) was influenced negatively 
by two factors. First, when the incremental critiquing strategies were activated, the 
system slowed down dramatically—after repeated object placements the roof 
designers became impatient. This issue is intertwined with the issue of critiquing 
strategy usability, discussed later in this chapter. Second, the designers tended to 
focus on the drawing window and missed critical textual information in the dialog 
window. Since the dialog window was the primary source of information about 
system readiness, users were often unsure whether critiques were available, when 
the system was ready for them to place an object on the design, and how the objects 
were to be placed. This and related issues are described in the next chapter. De- 
spite these particular negative comments, system users generally were satisfied 
with the interface's overall usability. 

Question 1:   What is your overall assessment of the usability of the current 
interface? 

Not usable                        Neutral                      Very usable 
at all                            ,-—x 

1                 2             f  3  )             4                 5 

Question 2:   How difficult/easy was it to leam how to use the interface? 

Difficult                           Neutral                               Easy 

1                 2                  3             (AJ             5 

Question 3:   What is your assessment of selecting roof objects from an 
object palette? 

Extreme                            Neutral                            Liked it 
dislike                                                                       a lot 

1                 2                  3             (A J             5 

Figure 64. Evaluation form results. 
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The direct iconic manipulation scheme of the interface was intuitive and easy to 
learn for most system users (Question 2). One of the evaluators had never used a 
CAD system before, and thus had some initial difficulties with the interface. Al- 
though he was never as fluent with the system as the other evaluators, at the end 
of the evaluation session he seemed comfortable with the interface. 

Finally, users liked the design object palette. One central concern regarding the 
interface was whether users would find unacceptable the limited set of roof com- 
ponents available in the object palette. This was not the case, and many stated that 
having standardized design objects would reduce their drawing effort. 

The second set of questions shown in Figure 65 pertain to how SEDAR displays its 
critiques. While users found the graphical portions of the critiques clear and easy 
to understand (Question 5), they had a more difficult time understanding the textual 
portions (Question 6). This was because (1) the terminology used in the textual 
portions was too specific to the representations in SEDAR (i.e., a cricket was 
described as a two-slope-drainage-area in reference to its generic object type in 

Question 4:    How well was the system able to communicate its critiques to 
you overall? 

Not able to 
communicate clearly 

1 2 

Able to 
communiate them clearly 

Question 5:   How easy was it to understand the graphical parts of the 
critiques? 

Difficult 
to understand 

1 

Easy to 
understand 

Question 6:   How easy was it to understand the textual parts of the critiques? 

Difficult 
to understand 

1 

Easy to 
understand 

Figure 65. Evaluation forms results, continued. 



114  USACERL TM 96/99 

SEDAR) and (2) the critiques referred to particular design objects (like two-slope- 
drainage-area539 or roof-drain56), and users were not able to relate the critique to 

the objects on the drawing. 

Critiquing Strategy Usability. The set of questions in Figure 66 pertain to the incre- 
mental error prevention and error correction strategies. In general, designers found 
the incremental strategies helpful (Questions 7 and 9). Novice- and intermediate- 
level roof designers found the incremental strategies very useful. Experienced roof 
designers had several complaints about the incremental strategies, which led to a 
rethinking of how such strategies should be implemented for this category of users. 
In addition to the slowness of the system operation when running the incremental 
critics, the evaluators also pointed out problems with the granularity of the 
strategies with respect to their design actions. To clarify, SEDAR's critiquing strate- 
gies are based about the design-object activity level of user actions—critiques are 

Question 7: How useful was the information provided by the Error 
Prevention Critic? 

Not useful Somewhat useful Very useful 

1 2                  3 G ) 
Que stion 8:  I s the Error Prevention Critic helpful or detrimental to you? 

Detrimental Neutral Helpful 

1 2                  3 G )       * 

Question0-:  H ow us eful was the information pro vide d by the Error 
Correction Critic? 

Not useful Somewhat useful Very useful 

1 2                  3 G )       * 

Question 10:  Is the Error Correction Critic helpfu . or detrimental to you? 

Detrimental Neutral Helpful 

1 2                   3 G )      5 

Figure 66. More evaluation form results. 
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run every time a new object is placed on the drawing. With this philosophy, the 
system tends to focus its critiques on individual objects rather than systems of 
objects, which causes it to provide critiques at incorrect times. An example of this 
is the hatch requirement design code. As soon as a designer begins to place mechan- 
ical equipment in the roof field, SEDAR discovers this "violation" and reports it to 
the user. However, the evaluators asserted that they fully planned to put a hatch 
on the roof eventually, and the repeated "violations" were inappropriate at that 
stage of the roof design. Thus the timing of certain types of critiques (e.g., design 
suggestions generated by object-existence design codes) need to be improved. 

Despite these criticisms, both inexperienced and experienced users felt that the 
incremental strategies did help them to perform their task (Questions 8 and 10). 
This point is further evidenced by the results of the error reduction experiment 

reported in the next section. 

The Error Reduction Experiment 

Preliminary results from the error reduction experiment show that SEDAR reduces 
the number of errors made by roof designers. The total number of errors and the 
different classes of errors made by each designer were tabulated and are reported 
in this section. A class of error represents all errors resulting from the application 
of a particular design code to the drawing. For instance, if the situation in Figure 67 
occurs, there are three total errors (each pair of air-conditioning units are too close 
together) but only a single class of error, since each error was the result of the 
application of the same design code. 

Violation3  / 

Violati an 1 

AC 
AC 

AC 
Violatio n2 

Figure 67. Three total errors; one class of error. 
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One roof designer made four classes of errors and 15 total errors during the non- 
critiqued design task. During the critiqued design task, the same designer made 
five classes of errors and 15 total errors. The system cued the roof designer properly 
on four of the five classes of errors and 14 out of the 15 total errors. 

In another experiment, SEDAR was able to cue the roof designer on four out of five 
classes of errors for a total reduction of seven out of eight errors. The system failed 
to cue the designer on an optimization issue regarding the closeness of an air- 
handling unit to a roof drain; although the placement of the unit satisfied the rele- 
vant design code, the unit (or the roof drain) was placed in a suboptimal location. 
This issue is discussed in the following chapter. 

In general, the results show that roof designers will benefit from the use of SEDAR. 
Specific problems with the knowledge base involving completeness and correctness 
were exposed and will be dealt with in future versions of the system. 
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10     Discussion 

Many issues were raised during the evaluation and testing process of the SEDAR 
system prototype. For the sake of conciseness, only the most interesting are dis- 
cussed here. Four issues that arose during the evaluation involved system usability. 
The first issue directly involves some of the questions about the system's usability: 
the value of the error prevention, error correction, and design review critiquing 
strategies implemented for the prototype. The second issue, that of a strong order- 
ing of tasks in the roof design domain, arose during the question and answer process 
and is discussed in the second section of this chapter. The third issue involves the 
notion of optimizing rather than satisficing designs. Specific facets of the user 
interface design elicited strong comments from the evaluators, and these are 
described in the fourth section of this chapter. Finally, many of the evaluators 
expressed a concern regarding the adaptability of the system—whether it had the 
capability to either add new rules by itself (machine learning) or to allow users to 
enter new rules (knowledge acquisition). 

On the Usability of Critiquing Strategies 

The three practitioner/proficient practitioner level evaluators had strong reactions 
to the various critiquing strategies. The general consensus among these evaluators 
was that the incremental error prevention and error detection strategies as imple- 
mented would be of little interest to them. However, they were not adverse to the 
idea of incremental critiquing. The problem was with how the iterative critiquing 
cycle worked. Specifically, creating a set of constraint areas (as the error prevention 
critiquing strategy does) each time a design object was selected was annoying. 
Similarly, they were not pleased with the way the error correction strategy critiqued 
the design when a single new object was added to the design. Essentially what is 
needed is a less "continuous" style of critiquing than the current implementation. 
The system should form its critiques based on collections of objects rather than each 
object in isolation. For example, one evaluator did not like the "roof requires a 
hatch" critique he encountered repeatedly while placing air-handling units on the 
roof design. He argued that he fully intended to put a hatch on the design, so there 
was no need for a constant stream of critiques to remind him ofthat fact. Therefore, 
the timing of critique generation for the incremental critiquing strategies should be 
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improved. Specifically, research is needed to determine when the designer is 
finished creating certain subsystems so that the critiquing strategies may be applied 
at the correct time. 

In contrast to the somewhat negative response regarding the incremental critiquing 
strategies, the experienced roof designers liked the design review critic. One pos- 
sible reason for this is greater control over when the critic is activated. The compre- 
hensiveness of the design review also appealed to them. 

The two users at the intermediate level of expertise found the error prevention and 
error detection strategies more useful than the design review critic. There were two 
reasons for the disparity. First, the error prevention and error detection critics 
tended to influence their problem-solving behavior. Looking at the examples in 
Chapter 8, the contents of the critiques implicitly suggest the next step to the 
designer. For intermediate-level users who are not yet confident of their problem- 
solving abilities in the domain, the problem-solving structure defined by the series 
of critiques is reassuring. Second, the intermediate-level users seldom activated the 
design review critic, if at all. Their focus was on the design itself and the critiques 
generated by their actions. 

The different critiquing strategies offered by SEDAR appeal to different levels of 
users. While practitioner and proficient practitioner level designers view SEDAR 
more as a tool that may be invoked occasionally to help them near the conclusion of 
their problem-solving, intermediate-level users favor the incremental critiquing 
ability of SEDAR to guide them through the roof design process. 

Strong Orderings in the Roof Design Problem-Solving Structure 

The use of SEDAR's DTM allows it to follow the designer's problem-solving process 
as flexibly as possible. However, all of the experienced roof designers participating 
in the evaluation have noted that some tasks are invariably accomplished before 
others. The temporal orderings stem from how the roof design task is addressed in 
the overall building design task. Certain facts about the roof are established early 
in the building design task. These facts include what type of roof (flat or low-slope) 
is to be designed, the type of membrane (i.e., EPDM, Modified Bitumen, or PVC) is 
to be applied, the type of deck, the type of drainage system (interior or exterior), and 
the types of roof-mounted equipment. These facts are established early because they 
influence the design activity on other parts of the building. For example, the exist- 
ence of roof-mounted air-handling units means that the mechanical engineer must 
provide ductwork to and from the unit.   The type of roof and deck influence the 



USACERL TM 96/99  119 

design of the roof framing plan. The remaining tasks for designing the roof are 
usually begun when most of the building design has been completed. The act of 
deciding these facts about the roof represent the conceptual stage of the roof design. 

In summary, while SEDAR's problem-solving support flexibility is necessary for 
many of the roof design tasks, the structuring of the tasks described above lends 
itself to additional assistance opportunities. For example, SEDAR could provide 
assistance at the conceptual stage of roof design by providing advice on how to 
answer the above questions, and by actively inquiring about them if the roof design 
continues with incomplete information. 

Optimization Versus Satisfying Design Advice 

The design specifications encoded in SEDAR represent minimal qualifications 
(satisficing conditions) for a roof design. Experienced roof designers attempt to opti- 
mize the layout of systems of objects according to a set of metrics. An example of 
this is hatch placement optimization. The design codes for hatch placement are 
relatively simple, the access pathway through the roof framing plan to the hatch 
should be unobstructed. The hatch itself should be not be obstructed by other roof 
elements. Observation of a human design expert demonstrated additional concerns: 
the hatch should be placed in a location that minimizes the walkway distances to 
the other roof-mounted equipment, and the hatch should not be placed in an area 
of heavy customer traffic. 

Ways of approaching this problem are many from the viewpoint of creating critiqu- 
ing systems to support the designer's reasoning process. One approach is to do 
nothing to resolve the issue. Another approach is to acknowledge the issue and 
provide information (not necessarily critiques) about the decision to be made. For 
example, a checklist of design issues could be shown to the designer. Yet another 
approach is to have the system critique the designer's solution according to these 
new functional requirements for the hatch and to actively elicit the answers to the 
unknown requirements. For this last approach, great care must be taken to create 
a complete set of functional requirements for each design task. 

User Interface Issues 

All of the evaluators had comments to make on the user interface. This section 
discusses the two most important lessons learned. Designers of all experience levels 
tended to focus solely on the Design Window, which contains the graphical 
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representation of the design, throughout the entire session. Very little attention 
was paid to the text-based Dialog Window. The problem with the current implemen- 
tation was that nearly all communication from the user interface (except for the 
graphical critique displays) were in textual form and displayed in the dialog window, 
where they were ignored by the user. An example of this was the notification that 
the system was ready to proceed after an object was selected and its constraint areas 
shown on the drawing. In many cases the user waited patiently until it was pointed 
out that the system was ready to proceed. Similar situations arose for notifications 
of available critiques, directions for layout of special objects (e.g., walkways), and 
textual critique explanations. The suggested remedy was to move the information 
to the drawing window and make it more graphical in nature, such as placing a 
large READY button on the drawing window to notify the user when the system is 

ready for an object placement. 

The second lesson is that even incidental wording or terminology used in the system 
must be carefully controlled. An example of this terminology is the use of the word 
"violations." The message "There are placing violations found" tended to place the 
user in an antagonistic frame of mind. The problem is exacerbated when ob- 
ject-existence rule violations are found that specify missing objects on the design; 
"violations" may be better termed as "suggestions." Thus an interface must be 
examined carefully to ensure that every communication conveys exactly the 
intended tone of the critique. 

Knowledge Acquisition and Machine Learning 

One of the primary criticisms of expert systems (and hence expert critiquing 
systems) is that they generally have no provisions for modification of their rule base. 
While much research has been done in the field of expert systems on knowledge 
acquisition and machine learning, little research has been done in the field of expert 
critiquing systems. JANUS [Fischer 1991] is one of the few expert critiquing 
systems that provide an interface that allows system users to augment the knowl- 
edge base. Currently SEDAR has no provisions for knowledge acquisition or 
machine learning techniques. However, this issue will be addressed in future work 

on the system. 

Chapter Summary 

The results of the evaluation and testing phase on the SEDAR research prototype 
provide strong directions for future research. While the experienced roof designers 
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described some problems with the current implementation of the error prevention 
and error correction critiquing strategies, they provided excellent directions for 
future research involving the judicious timing and placement of incremental 
critiques. In contrast, intermediate-level users found the existing incremental 
critiquing strategies to be more useful than the design review strategy. Interviews 
with experienced roof designers also established specific optimization consider- 
ations, and may lead to a principled design optimization suggestion strategy. An 
unexpected but welcome result was increased insight into the structure of the roof 
design task, which may lead to critiquing strategies appropriate for the conceptual 
design stage. Two important issues regarding user interface design were estab- 
lished. Finally, although knowledge acquisition/machine learning is not addressed 
in the current system, they are concerns that will be dealt with later. 
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11     Summary and Conclusions 

The development of SEDAR is in itself a process of iterative design, subject to the 
same fundamental design and review process that it seeks to model and improve. 
This chapter summarizes the contributions of this work, the progress to date, the 
lessons learned from the evaluation of the system, and directions for future work. 

This work demonstrates a technique of using a hierarchically-decomposed, task- 
based model of an experienced designer, the DTM, for flexible control of the opera- 
tion of an expert critiquing system. Control is flexible in that the system user 
retains full control of the problem-solving process, and is not forced along predefined 
solution paths. Thus SEDAR is able to follow the individual designer's problem- 
solving preferences. At the same time, the DTM allows the system to present the 
most focused, appropriate critiques at each step in the user's design process. Few 
user models exist in implemented expert critiquing systems even today, despite their 
acknowledged usefulness in these types of systems. Two systems that do have user 
models, LISP-CRITIC and HYDRA, are presented and contrasted to the DTM of 
SEDAR. The primary difference is that the DTM is a process-based representation 
of experienced roof designers' task structures, while the other user models focus on 
representing the individuality of users' preferences. Thus SEDAR's use of the DTM 
allows finer-grained control over the content and timing of critiques throughout the 
design process than other critiquing systems, which is essential for systems that 
perform incremental critiquing. 

SEDAR may be situated as an architectural design agent in a concurrent engineer- 
ing environment, automating the application of constructibility review knowledge 
during the design process to roof designs. This addresses some of the problems of 
the current design/review process, where review knowledge is applied infrequently 
and often incompletely throughout the design stage of an artifact's lifecycle. The 
integration of design and review provided by SEDAR hopefully will reduce the 
length of the design stage, promote more frequent and more complete design 
reviews, and reduce the number of errors surviving past the design phase. 

The evaluation conducted on the research prototype (Chapter 9) illustrated the 
strengths and weaknesses of SEDAR. The intended user community approved the 
design review strategy but did not find the current implementation of the error pre- 
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vention and error correction critiquing strategies usable. Among the most common 
factors cited were the length of time for the incremental critiquing strategies to run 
and the granularity of critique generation and notification. The system evaluators 
often proposed viable solutions to many of the problems they described, so future 
work will involve developing incremental critics that better satisfy the needs of roof 
designers. The error reduction effectiveness study showed that the system can help 
roof designers prevent and discover errors that are related to design codes in the 
knowledge base. Another enhancement to the system that was suggested frequently 
was to have some form of design suggestion in addition to the critiquing strategies. 
Where the critiquing strategies tell where not to place particular types of objects on 
the existing design, a design suggestion facility would show the optimal (or near- 
optimal) location for the object. Finally, another critical issue that was mentioned 
frequently was knowledge acquisition and machine learning. The ability to add new 
design objects, design codes, and designer preferences are essential for the use of 
SEDAR in design offices. 
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